skip to main content


Title: Variation in overall fitness due to seed source: projections for predictive provenancing

Seed sourcing decisions affect short‐ and long‐term restoration outcomes. Seeds sourced closer to restoration sites are likely to be better adapted to local conditions and therefore may perform better than those sourced farther away, following assumptions of local adaptation. However, plants may not be adapted to future conditions under climate change; hence, managers are considering a predictive provenancing approach, where plant materials adapted to predicted conditions are used at a site. Currently, there is little empirical evidence available to inform this approach. To address this, we evaluate predictive provenancing using three species of forbs used in tallgrass prairie restorations (Allium cernuum,Chamaecrista fasciculata, andRudbeckia hirta) in a common garden experiment in northeastern Illinois, U.S.A. We compared the fitness in plants sourced from three regional zones across a latitudinal gradient that represents different climate projections, relative to the planting site. Data were analyzed using Aster life‐history models and generalized linear models. We found that source affected overall fitness in all three species, but no climate proxy had the highest fitness across all species. The performance at each life stage had different effects on overall fitness, which varied by source. We observed later reproductive phenology in southern‐sourced plants for all three species, possibly due to adaptation to longer growing seasons. The mixed results of this study suggest that climate proxy alone would not be sufficient to determine an effective and accurate predictive provenancing strategy. Long‐term tests are needed to pursue such a strategy for high‐priority species.

 
more » « less
NSF-PAR ID:
10392602
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Restoration Ecology
Volume:
31
Issue:
1
ISSN:
1061-2971
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The coordination of traits from individual organs to whole plants is under strong selection because of environmental constraints on resource acquisition and use. However, the tight coordination of traits may provide underlying mechanisms of how locally adapted plant populations can become maladapted because of climate change.

    To better understand local adaptation in intraspecific trait coordination, we studied trait variability in the widely distributed foundation tree species,Populus fremontiiusing a common garden near the mid‐elevational point of this species distribution. We examined 28 traits encompassing four spectra: phenology, leaf economic spectrum (LES), whole‐tree architecture (Corner's Rule) and wood economic spectrum (WES).

    Based on adaptive syndrome theory, we hypothesized that trait expression would be coordinated among and within trait spectra, reflecting local adaptation to either exposure to freeze‐thaw conditions in genotypes sourced from high‐elevation populations or exposure to extreme thermal stress in genotypes sourced from low‐elevation populations.

    High‐elevation genotypes expressed traits within the phenology and WES that limit frost exposure and tissue damage. Specifically, genotypes sourced from high elevations had later mean budburst, earlier mean budset, higher wood densities, higher bark fractions and smaller xylem vessels than their low‐elevation counterparts. Conversely, genotypes sourced from low elevations expressed traits within the LES that prioritized hydraulic efficiency and canopy thermal regulation to cope with extreme heat exposure, including 40% smaller leaf areas, 67% higher stomatal densities and 34% higher mean theoretical maximum stomatal conductance. Low‐elevation genotypes also expressed a lower stomatal control over leaf water potentials that subsequently dropped to pressures that could induce hydraulic failure.

    Synthesis. Our results suggest thatPopulus fremontiiexpresses a high degree of coordination across multiple trait spectra to adapt to local climate constraints on photosynthetic gas exchange, growth and survival. These results, therefore, increase our mechanistic understanding of local adaptation and the potential effects of climate change that in turn, improves our capacity to identify genotypes that are best suited for future restoration efforts.

     
    more » « less
  2. Abstract

    Danthonia californicaBolander (Poaceae)is a native perennial bunchgrass commonly used in the restoration of prairie ecosystems in the western United States. Plants of this species simultaneously produce both chasmogamous (potentially outcrossed) and cleistogamous (obligately self‐fertilized) seeds. Restoration practitioners almost exclusively use chasmogamous seeds for outplanting, which are predicted to perform better in novel environments due to their greater genetic diversity. Meanwhile, cleistogamous seeds may exhibit greater local adaptation to the conditions in which the maternal plant exists. We performed a common garden experiment at two sites in the Willamette Valley, Oregon, to assess the influence of seed type and source population (eight populations from a latitudinal gradient) on seedling emergence and found no evidence of local adaptation for either seed type. Cleistogamous seeds outperformed chasmogamous seeds, regardless of whether seeds were sourced directly from the common gardens (local seeds) or other populations (nonlocal seeds). Furthermore, average seed weight had a strong positive effect on seedling emergence, despite the fact that chasmogamous seeds had significantly greater mass than cleistogamous seeds. At one common garden, we observed that seeds of both types sourced from north of our planting site performed significantly better than local or southern‐sourced seeds. We also found a significant seed type and distance‐dependent interaction, with cleistogamous seedling emergence peaking approximately 125 km from the garden. These results suggest that cleistogamous seeds should be considered for greater use inD. californicarestoration.

     
    more » « less
  3. Abstract

    Species distribution models predict shifts in forest habitat in response to warming temperatures associated with climate change, yet tree migration rates lag climate change, leading to misalignment of current species assemblages with future climate conditions. Forest adaptation strategies have been proposed to deliberately adjust species composition by planting climate‐suitable species. Practical evaluations of adaptation plantings are limited, especially in the context of ecological memory or extreme climate events.

    In this study, we examined the 3‐year survival and growth response of future climate‐adapted seedling transplants within operational‐scale silvicultural trials across temperate forests in the northeastern US. Nine species were selected for evaluation based on projected future importance under climate change and potential functional redundancy with species currently found in these ecosystems. We investigated how adaptation planting type (‘population enrichment’ vs. ‘assisted range expansion’) and local site conditions reinforce interference interactions with existing vegetation at filtering adaptation strategies focused on transitioning forest composition.

    Our results show the performance of seedling transplants is based on species (e.g. functional attributes and size), the strength of local competition (e.g. ecological memory) and adaptation planting type, a proxy for source distance. These findings were consistent across regional forests but modified by site‐specific conditions such as browse pressure and extreme climate events, namely drought and spring frost events.

    Synthesis and applications. Our results highlight that managing forests for shifts in future composition represents a promising adaptation strategy for incorporating new species and functional traits into contemporary forests. Yet, important barriers remain for the establishment of future climate‐adapted forests that will most likely require management intervention. Nonetheless, the broader applicability of our findings demonstrates the potential for adaptation plantings to serve as strategic source nodes for the establishment of future climate‐adapted species across functionally connected landscapes.

     
    more » « less
  4. Abstract

    As climates change, species with locally adapted populations may be particularly vulnerable as specialization narrows the range of conditions under which populations can persist. Populations adapted to local climate as well as other site‐specific characteristics like soils present challenges for inferring how changing climates affect fitness, as climatic and nonclimatic variables that constitute local conditions decouple. We conducted two transplant experiments involving American ginseng to test how climatic conditions affect performance while controlling for effects of other site characteristics. We first out‐planted populations from differing elevations to gardens arrayed along an elevation/climate gradient. We also grew maternal plants under temperatures corresponding to home‐site and future conditions (16.4–22.4°C), transplanting resultant progeny to two home‐sites at different elevations (400 m, 800 m). Source populations responded idiosyncratically to elevation reflecting how nonclimatic site characteristics strongly affected plant fitness. Germination rates declined for seeds from maternal plants exposed to warmer temperatures, which compounded with diminished seed production of maternal plants, suggested that population growth may decline rapidly as warm years become hotter and more frequent. Controlling for maternal temperature effects provided evidence that plants are adapted to home‐site conditions, both climatic and nonclimatic, with population growth rates for out‐planted populations ranging from below population replacement levels (λ = 0.58) to well above (λ = 1.33). Evidence of local adaptation to climatic and nonclimatic environmental components, in combination with negative fitness impacts of warming climates on offspring via maternal effects, suggests that changing climate may imperil ginseng and other similar understory species.

     
    more » « less
  5. Arias, Renee S. (Ed.)
    ABSTRACT

    Due to climate change, drought frequencies and severities are predicted to increase across the United States. Plant responses and adaptation to stresses depend on plant genetic and environmental factors. Understanding the effect of those factors on plant performance is required to predict species’ responses to environmental change. We used reciprocal gardens planted with distinct regional ecotypes of the perennial grassAndropogon gerardiiadapted to dry, mesic, and wet environments to characterize their rhizosphere communities using 16S rRNA metabarcode sequencing. Even though the local microbial pool was the main driver of these rhizosphere communities, the significant plant ecotypic effect highlighted active microbial recruitment in the rhizosphere, driven by ecotype or plant genetic background. Our data also suggest that ecotypes planted at their homesites were more successful in recruiting rhizosphere community members that were unique to the location. The link between the plants’ homesite and the specific local microbes supported the “home field advantage” hypothesis. The unique homesite microbes may represent microbial specialists that are linked to plant stress responses. Furthermore, our data support ecotypic variation in the recruitment of congeneric but distinct bacterial variants, highlighting the nuanced plant ecotype effects on rhizosphere microbiome recruitment. These results improve our understanding of the complex plant host–soil microbe interactions and should facilitate further studies focused on exploring the functional potential of recruited microbes. Our study has the potential to aid in predicting grassland ecosystem responses to climate change and impact restoration management practices to promote grassland sustainability.

    IMPORTANCE

    In this study, we used reciprocal gardens located across a steep precipitation gradient to characterize rhizosphere communities of distinct dry, mesic, and wet regional ecotypes of the perennial grassAndropogon gerardii. We used 16S rRNA amplicon sequencing and focused oligotyping analysis and showed that even though location was the main driver of the microbial communities, ecotypes could potentially recruit distinct bacterial populations. We showed that differentA. gerardiiecotypes were more successful in overall community recruitment and recruitment of microbes unique to the “home” environment, when growing at their “home site.” We found evidence for “home-field advantage” interactions between the host and host–root-associated bacterial communities, and the capability of ecotypes to recruit specialized microbes that were potentially linked to plant stress responses. Our study aids in a better understanding of the factors that affect plant adaptation, improve management strategies, and predict grassland function under the changing climate.

     
    more » « less