skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ecological memory and regional context influence performance of adaptation plantings in northeastern US temperate forests
Abstract Species distribution models predict shifts in forest habitat in response to warming temperatures associated with climate change, yet tree migration rates lag climate change, leading to misalignment of current species assemblages with future climate conditions. Forest adaptation strategies have been proposed to deliberately adjust species composition by planting climate‐suitable species. Practical evaluations of adaptation plantings are limited, especially in the context of ecological memory or extreme climate events.In this study, we examined the 3‐year survival and growth response of future climate‐adapted seedling transplants within operational‐scale silvicultural trials across temperate forests in the northeastern US. Nine species were selected for evaluation based on projected future importance under climate change and potential functional redundancy with species currently found in these ecosystems. We investigated how adaptation planting type (‘population enrichment’ vs. ‘assisted range expansion’) and local site conditions reinforce interference interactions with existing vegetation at filtering adaptation strategies focused on transitioning forest composition.Our results show the performance of seedling transplants is based on species (e.g. functional attributes and size), the strength of local competition (e.g. ecological memory) and adaptation planting type, a proxy for source distance. These findings were consistent across regional forests but modified by site‐specific conditions such as browse pressure and extreme climate events, namely drought and spring frost events.Synthesis and applications. Our results highlight that managing forests for shifts in future composition represents a promising adaptation strategy for incorporating new species and functional traits into contemporary forests. Yet, important barriers remain for the establishment of future climate‐adapted forests that will most likely require management intervention. Nonetheless, the broader applicability of our findings demonstrates the potential for adaptation plantings to serve as strategic source nodes for the establishment of future climate‐adapted species across functionally connected landscapes.  more » « less
Award ID(s):
1920908
PAR ID:
10447317
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Applied Ecology
Volume:
59
Issue:
1
ISSN:
0021-8901
Page Range / eLocation ID:
p. 314-329
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Alterations in global climate via extreme precipitation will have broadscale implications on ecosystem functioning. The increased frequency of drought, coupled with heavy, episodic rainfall are likely to generate impacts on biotic and abiotic processes across aquatic and terrestrial ecosystems. Despite the demonstrated shifts in global precipitation, less is known how extreme precipitation interacts with biophysical factors to control future demographic processes, especially those sensitive to climate extremes such as organismal recruitment and survival. We utilized a field‐based precipitation manipulation experiment in 0.1 ha forest canopy openings to test future climate scenarios characterized by extreme precipitation on temperate tree seedling survival. The effects of planting seedbeds (undisturbed leaf litter/organic material vs. scarified, exposed mineral soils), seedling ontogeny, species, and functional traits were examined against four statistically defined precipitation scenarios. Results indicated that seedlings grown within precipitation treatments characterized by heavy, episodic rainfall preceded by prolonged drying responded similarly to drought treatments lacking episodic inputs. Moreover, among all treatment conditions tested, scarified seedbeds most strongly affected seedling survivorship (odds ratio 6.9). Compared with any precipitation treatment, the effect size (predicted probabilities) of the seedbed was more than twice as important in controlling seedling survivorship. However, the interaction between precipitation and seedbed resulted in a 27.9% improvement in survivorship for moisture‐sensitive species. Seedling sensitivity to moisture was variable among species, and most closely linked with functional traits such as seed mass. For instance, under dry moisture regimes, survivorship increased linearly with seed mass (log transformed; adjustedR2 = 0.72,p < 0.001), yet no relationship was apparent under wet moisture regimes. Although precipitation influenced survival, extreme rainfall events were not enough to offset moisture deficits nor provide a rescue effect under drought conditions. The relationships reported here highlight the importance of plant seedbeds and species (e.g., functional traits) as edaphic and biotic controls that modify the influence of extreme future precipitation on seedling survival in temperate forests. Finally, we demonstrated the biophysical factors that were most influential to early forest development and that may override the negative effects of increasingly variable precipitation. This work contributes to refinements of species distribution models and can inform reforestation strategies intended to maintain biodiversity and ecosystem function under increasing climate extremes. 
    more » « less
  2. Abstract Ecological restoration is beneficial to ecological communities in this era of large‐scale landscape change and ecological disruption. However, restoration outcomes are notoriously variable, which makes fine‐scale decision‐making challenging. This is true for restoration efforts that follow large fires, which are increasingly common as the climate changes.Post‐fire restoration efforts, like tree planting and seeding have shown mixed success, though the causes of the variation in restoration outcomes remain unclear. Abiotic factors such as elevation and fire severity, as well as biotic factors, such as residual canopy cover and abundance of competitive understorey grasses, can vary across a burned area and may all influence the success of restoration efforts to re‐establish trees following forest fires.We examined the effect of these factors on the early seedling establishment of a tree species—māmane (Sophora chrysophylla)—in a subtropical montane woodland in Hawaiʻi. Following a human‐caused wildfire, we sowed seeds of māmane as part of a restoration effort. We co‐designed a project to examine māmane seedling establishment.We found that elevation was of overriding importance, structuring total levels of plant establishment, with fewer seedlings establishing at higher elevations. Residual canopy cover was positively correlated with seedling establishment, while cover by invasive, competitive understorey grasses very weakly positively correlated with increased seedling establishment.Our results point to specific factors structuring plant establishment following a large fire and suggest additional targeted restoration actions within this subtropical system. For example, if greater native woody recruitment is a management goal, then actions could include targeted seed placement at lower elevations where establishment is more likely, increased seeding densities at high elevation where recruitment rates are lower, and/or invasive grass removal prior to seeding. Such actions may result in faster native ecosystem recovery, which is a goal of local land managers. 
    more » « less
  3. Abstract Tropical forest restoration presents a potential lifeline to mitigate climate change and biodiversity crises in the Anthropocene. Yet, the extent to which human interventions, such as tree planting, accelerate the recovery of mature functioning ecosystems or redirect successional trajectories toward novel states remains uncertain due to a lack of long‐term experiments. In 2004–2006, we established three 0.25‐ha plots at 10 sites in southern Costa Rica to test three forest restoration approaches: natural regeneration (no planting), applied nucleation (planting in patches), and plantation (full planting). In a comprehensive survey after 16–18 years of recovery, we censused >80,000 seedlings, saplings, and trees from at least 255 species across 26 restoration plots (nine natural regeneration, nine applied nucleation, eight plantation) and six adjacent reference forests to evaluate treatment effects on recruitment patterns and community composition. Both applied nucleation and plantation treatments resulted in significantly elevated seedling and sapling establishment and more predictable community composition compared with natural regeneration. Similarity of vegetation composition to reference forest tended to scale positively with treatment planting intensity. Later‐successional species with seeds ≥5 mm had significantly greater seedling and sapling abundance in the two planted treatments, and plantation showed similar recruitment densities of large‐seeded (≥10 mm) species to reference forest. Plantation tended toward a lower abundance of early‐successional recruits than applied nucleation. Trees (≥5 cm dbh) in all restoration treatments continued to be dominated by a few early‐successional species and originally transplanted individuals. Seedling recruits of planted taxa were more abundant in applied nucleation than the other treatments though few transitioned into the sapling layer. Overall, our findings show that active tree planting accelerates the establishment of later‐successional trees compared with natural regeneration after nearly two decades. While the apparent advantages of higher density tree planting on dispersal and understory establishment of larger seeded, later‐successional species recruitment is notable, more time is needed to assess whether these differences will persist and transition to the more rapid development of a mature later‐successional canopy. Our results underscore the need for ecological restoration planning and monitoring that targets biodiversity recovery over multiple decades. 
    more » « less
  4. Abstract Warming temperatures and rising moisture deficits are expected to increase the rates of background tree mortality–low amounts of tree mortality (~0.5%–2% year−1), characterizing the forest demographic processes in the absence of abrupt, coarse‐scale disturbance events (e.g. fire). When compounded over multiple decades and large areas, even minor increases in background tree mortality (e.g. <0.5% year−1) can cause changes to forest communities and carbon storage potential that are comparable to or greater than those caused by disturbances.We examine how temporal variability in rates of background tree mortality for four subalpine conifers reflects variability in climate and climate teleconnections using observations of tree mortality from 1982 to 2019 at Niwot Ridge, Colorado, USA. Individually marked trees (initial population 5,043) in 13 permanent plots—located across a range of site conditions, stand ages and species compositions—were censused for new mortality nine times over 37 years.Background tree mortality was primarily attributed to stress from unfavourable climate and competition (71.2%) and bark beetle activity (23.3%), whereas few trees died from wind (5.3%) and wildlife impacts (0.2%). Mean annualized tree mortality attributed to tree stress and bark beetles more than tripled across all stands between initial censuses (0.26% year−1, 1982–1993/1994) and recent censuses (0.82% year−1, 2008–2019). Higher rates of tree mortality were related to warmer maximum summer temperatures, greater summer moisture deficits, and negative anomalies in ENSO (La Niña), with greater effects of drought in some subpopulations (tree size, age and species). For example, in older stands (>250 years), larger and older trees were more likely to die than smaller and younger trees. Differences in tree mortality rates and sensitivity to climate among subpopulations that varied by stand type may lead to unexpected shifts in stand composition and structure.Synthesis. A strong relationship between higher rates of tree mortality and warmer, drier summer climate conditions implies that climate warming will continue to increase background mortality rates in subalpine forests. Combined with increases in disturbances and declining frequency of moist‐cool years suitable for seedling establishment, increasing rates of tree mortality have the potential to drive declines in subalpine tree populations. 
    more » « less
  5. Abstract Background and AimsUnderstanding shifts in the demographic and functional composition of forests after major natural disturbances has become increasingly relevant given the accelerating rates of climate change and elevated frequency of natural disturbances. Although plant demographic strategies are often described across a slow–fast continuum, severe and frequent disturbance events influencing demographic processes may alter the demographic trade-offs and the functional composition of forests. We examined demographic trade-offs and the shifts in functional traits in a hurricane-disturbed forest using long-term data from the Luquillo Forest Dynamics Plot (LFPD) in Puerto Rico. MethodsWe analysed information on growth, survival, seed rain and seedling recruitment for 30 woody species in the LFDP. In addition, we compiled data on leaf, seed and wood functional traits that capture the main ecological strategies for plants. We used this information to identify the main axes of demographic variation for this forest community and evaluate shifts in community-weighted means for traits from 2000 to 2016. Key ResultsThe previously identified growth–survival trade-off was not observed. Instead, we identified a fecundity–growth trade-off and an axis representing seedling-to-adult survival. Both axes formed dimensions independent of resprouting ability. Also, changes in tree species composition during the post-hurricane period reflected a directional shift from seedling and tree communities dominated by acquisitive towards conservative leaf economics traits and large seed mass. Wood specific gravity, however, did not show significant directional changes over time. ConclusionsOur study demonstrates that tree demographic strategies coping with frequent storms and hurricane disturbances deviate from strategies typically observed in undisturbed forests, yet the shifts in functional composition still conform to the expected changes from acquisitive to conservative resource-uptake strategies expected over succession. In the face of increased rates of natural and anthropogenic disturbance in tropical regions, our results anticipate shifts in species demographic trade-offs and different functional dimensions. 
    more » « less