skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Metal‐Organic Framework with Nonpolar Pore Surfaces for the One‐Step Acquisition of C 2 H 4 from a C 2 H 4 and C 2 H 6 Mixture
Award ID(s):
1834750
PAR ID:
10392736
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
61
Issue:
42
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The selectivity towards a specific C 2+ product, such as ethylene (C 2 H 4 ), is sensitive to the surface structure of copper (Cu) catalysts in carbon dioxide (CO 2 ) electro-reduction. The fundamental understanding of such sensitivity can guide the development of advanced electrocatalysts, although it remains challenging at the atomic level. Here we demonstrated that planar defects, such as stacking faults, could drive the electrocatalysis of CO 2 -to-C 2 H 4 conversion with higher selectivity and productivity than Cu(100) facets in the intermediate potential region (−0.50 ∼ −0.65 V vs. RHE). The unique right bipyramidal Cu nanocrystals containing a combination of (100) facets and a set of parallel planar defects delivered 67% faradaic efficiency (FE) for C 2 H 4 and a partial current density of 217 mA cm −2 at −0.63 V vs. RHE. In contrast, Cu nanocubes with exclusive (100) facets exhibited only 46% FE for C 2 H 4 and a partial current density of 87 mA cm −2 at an identical potential. Both ex situ CO temperature-programmed desorption and in situ Raman spectroscopy analysis implied that the stronger *CO adsorption on planar defect sites facilitates CO generation kinetics, which contributes to a higher surface coverage of *CO and in turn an enhanced reaction rate of C–C coupling towards C 2+ products, especially C 2 H 4 . 
    more » « less
  2. A series of N-doped porous carbons with different textural properties and N contents was prepared from a mixture of algae and glucose and their capability for the separation of CO 2 /CH 4 , C 2 H 6 /CH 4 , and CO 2 /H 2 binary mixtures under different conditions (bulk pressure, mixture composition, and temperature) were subsequently assessed in great detail. It was observed that the gas (C 2 H 6 , CO 2 , CH 4 , and H 2 ) adsorption capacity at different pressure regions was primarily governed by different adsorbent parameters (N level, narrow micropore volume, and BET specific surface area). More interestingly, it was found that N-doping can selectively enhance the heats of adsorption of C 2 H 6 and CO 2 , while it had a negligible effect on those of CH 4 and H 2 . The adsorption equilibrium selectivities for separating C 2 H 6 /CH 4 , CO 2 /CH 4 , and CO 2 /H 2 gas mixture pairs on the porous carbons were predicted using the ideal adsorbed solution theory (IAST) based on pure-component adsorption isotherms. In particular, sample NAHA-1 exhibited by far the best performance (in terms of gas adsorption capacity and selectivity) reported for porous carbons for the separation of these three binary mixtures. More significantly, NAHA-1 carbon outperforms many of its counterparts ( e.g. MOFs and zeolites), emphasizing the important role of carbonaceous adsorbents in gas purification and separation. 
    more » « less
  3. Abstract Oxygen-containing complex organic molecules are key precursors to biorelevant compounds fundamental for the origins of life. However, the untangling of their interstellar formation mechanisms has just scratched the surface, especially for oxygen-containing cyclic molecules. Here, we present the first laboratory simulation experiments featuring the formation of all three C2H4O isomers—ethylene oxide (c–C2H4O), acetaldehyde (CH3CHO), and vinyl alcohol (CH2CHOH)—in low-temperature model interstellar ices composed of carbon monoxide (CO) and ethanol (C2H5OH). Ice mixtures were exposed to galactic cosmic-ray proxies with an irradiation dose equivalent to a cold molecular cloud aged (7 ± 2) × 105yr. These biorelevant species were detected in the gas phase through isomer-selective photoionization reflectron time-of-flight mass spectrometry during temperature-programmed desorption. Isotopic labeling experiments reveal that ethylene oxide is produced from ethanol alone, providing the first experimental evidence to support the hypothesis that ethanol serves as a precursor to the prototype epoxide in interstellar ices. These findings reveal feasible pathways for the formation of all three C2H4O isomers in ethanol-rich interstellar ices, offering valuable constraints on astrochemical models for their formation. Our results suggest that ethanol is a critical precursor to C2H4O isomers in interstellar environments, representing a critical step toward unraveling the formation mechanisms of oxygen-containing cyclic molecules, aldehydes, and their enol tautomers from alcohols in interstellar ices. 
    more » « less