skip to main content


Title: Mycoparasites, Gut Dwellers, and Saprotrophs: Phylogenomic Reconstructions and Comparative Analyses of Kickxellomycotina Fungi
Abstract Improved sequencing technologies have profoundly altered global views of fungal diversity and evolution. High-throughput sequencing methods are critical for studying fungi due to the cryptic, symbiotic nature of many species, particularly those that are difficult to culture. However, the low coverage genome sequencing (LCGS) approach to phylogenomic inference has not been widely applied to fungi. Here we analyzed 171 Kickxellomycotina fungi using LCGS methods to obtain hundreds of marker genes for robust phylogenomic reconstruction. Additionally, we mined our LCGS data for a set of nine rDNA and protein coding genes to enable analyses across species for which no LCGS data were obtained. The main goals of this study were to: 1) evaluate the quality and utility of LCGS data for both phylogenetic reconstruction and functional annotation, 2) test relationships among clades of Kickxellomycotina, and 3) perform comparative functional analyses between clades to gain insight into putative trophic modes. In opposition to previous studies, our nine-gene analyses support two clades of arthropod gut dwelling species and suggest a possible single evolutionary event leading to this symbiotic lifestyle. Furthermore, we resolve the mycoparasitic Dimargaritales as the earliest diverging clade in the subphylum and find four major clades of Coemansia species. Finally, functional analyses illustrate clear variation in predicted carbohydrate active enzymes and secondary metabolites (SM) based on ecology, that is biotroph versus saprotroph. Saprotrophic Kickxellales broadly lack many known pectinase families compared with saprotrophic Mucoromycota and are depauperate for SM but have similar numbers of predicted chitinases as mycoparasitic.  more » « less
Award ID(s):
1441715
NSF-PAR ID:
10392800
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Editor(s):
Baldauf, Sandra
Date Published:
Journal Name:
Genome Biology and Evolution
Volume:
15
Issue:
1
ISSN:
1759-6653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fungi shape the diversity of life. Characterizing the evolution of fungi is critical to understanding symbiotic associations across kingdoms. In this study, we investigate the genomic and metabolomic diversity of the genus Escovopsis , a specialized parasite of fungus-growing ant gardens. Based on 25 high-quality draft genomes, we show that Escovopsis forms a monophyletic group arising from a mycoparasitic fungal ancestor 61.82 million years ago (Mya). Across the evolutionary history of fungus-growing ants, the dates of origin of most clades of Escovopsis correspond to the dates of origin of the fungus-growing ants whose gardens they parasitize. We reveal that genome reduction, determined by both genomic sequencing and flow cytometry, is a consistent feature across the genus Escovopsis, largely occurring in coding regions, specifically in the form of gene loss and reductions in copy numbers of genes. All functional gene categories have reduced copy numbers, but resistance and virulence genes maintain functional diversity. Biosynthetic gene clusters (BGCs) contribute to phylogenetic differences among Escovopsis spp., and sister taxa in the Hypocreaceae. The phylogenetic patterns of co-diversification among BGCs are similarly exhibited across mass spectrometry analyses of the metabolomes of Escovopsis and their sister taxa. Taken together, our results indicate that Escovopsis spp. evolved unique genomic repertoires to specialize on the fungus-growing ant-microbe symbiosis. 
    more » « less
  2. The first genome sequenced of a eukaryotic organism was for Saccharomyces cerevisiae, as reported in 1996, but it was more than 10 years before any of the zygomycete fungi, which are the early-diverging terrestrial fungi currently placed in the phyla Mucoromycota and Zoopagomycota, were sequenced. The genome for Rhizopus delemar was completed in 2008; currently, more than 1000 zygomycete genomes have been sequenced. Genomic data from these early-diverging terrestrial fungi revealed deep phylogenetic separation of the two major clades—primarily plant—associated saprotrophic and mycorrhizal Mucoromycota versus the primarily mycoparasitic or animal-associated parasites and commensals in the Zoopagomycota. Genomic studies provide many valuable insights into how these fungi evolved in response to the challenges of living on land, including adaptations to sensing light and gravity, development of hyphal growth, and co-existence with the first terrestrial plants. Genome sequence data have facilitated studies of genome architecture, including a history of genome duplications and horizontal gene transfer events, distribution and organization of mating type loci, rDNA genes and transposable elements, methylation processes, and genes useful for various industrial applications. Pathogenicity genes and specialized secondary metabolites have also been detected in soil saprobes and pathogenic fungi. Novel endosymbiotic bacteria and viruses have been discovered during several zygomycete genome projects. Overall, genomic information has helped to resolve a plethora of research questions, from the placement of zygomycetes on the evolutionary tree of life and in natural ecosystems, to the applied biotechnological and medical questions.

     
    more » « less
  3. Ma, Li-Jun (Ed.)
    Abstract Fungi have evolved over millions of years and their species diversity is predicted to be the second largest on the earth. Fungi have cross-kingdom interactions with many organisms that have mutually shaped their evolutionary trajectories. Zygomycete fungi hold a pivotal position in the fungal tree of life and provide important perspectives on the early evolution of fungi from aquatic to terrestrial environments. Phylogenomic analyses have found that zygomycete fungi diversified into two separate clades, the Mucoromycota which are frequently associated with plants and Zoopagomycota that are commonly animal-associated fungi. Genetic elements that contributed to the fitness and divergence of these lineages may have been shaped by the varied interactions these fungi have had with plants, animals, bacteria, and other microbes. To investigate this, we performed comparative genomic analyses of the two clades of zygomycetes in the context of Kingdom Fungi, benefiting from our generation of a new collection of zygomycete genomes, including nine produced for this study. We identified lineage-specific genomic content that may contribute to the disparate biology observed in these zygomycetes. Our findings include the discovery of undescribed diversity in CotH, a Mucormycosis pathogenicity factor, which was found in a broad set of zygomycetes. Reconciliation analysis identified multiple duplication events and an expansion of CotH copies throughout the Mucoromycotina, Mortierellomycotina, Neocallimastigomycota, and Basidiobolus lineages. A kingdom-level phylogenomic analysis also identified new evolutionary relationships within the subphyla of Mucoromycota and Zoopagomycota, including supporting the sister-clade relationship between Glomeromycotina and Mortierellomycotina and the placement of Basidiobolus as sister to other Zoopagomycota lineages. 
    more » « less
  4. Morphological characters and nuclear ribosomal DNA (rDNA) phylogenies have so far been the basis of the current classifications of arbuscular mycorrhizal (AM) fungi. Improved understanding of the evolutionary history of AM fungi requires extensive ortholog sampling and analyses of genome and transcriptome data from a wide range of taxa. To circumvent the need for axenic culturing of AM fungi we gathered and combined genomic data from single nuclei to generate de novo genome assemblies covering seven families of AM fungi. We successfully sequenced the genomes of 15 AM fungal species for which genome data was not previously available. Comparative analysis of the previously published Rhizophagus irregularis DAOM197198 assembly confirm that our novel workflow generates genome assemblies suitable for phylogenomic analysis. Predicted genes of our assemblies, together with published protein sequences of AM fungi and their sister clades, were used for phylogenomic analyses. We evaluated the phylogenetic placement of Glomeromycota in relation to its sister phyla (Mucoromycota and Mortierellomycota), and found no support to reject a polytomy. Finally, we explored the phylogenetic relationships within Glomeromycota. Our results support family level classification from previous phylogenetic studies, and the polyphyly of the order Glomerales with Claroideoglomeraceae as the sister group to Glomeraceae and Diversisporales. 
    more » « less
  5. Abstract Background

    Plastid genomes (plastomes) have long been recognized as highly conserved in their overall structure, size, gene arrangement and content among land plants. However, recent studies have shown that some lineages present unusual variations in some of these features. Members of the cactus family are one of these lineages, with distinct plastome structures reported across disparate lineages, including gene losses, inversions, boundary movements or loss of the canonical inverted repeat (IR) region. However, only a small fraction of cactus diversity has been analysed so far.

    Methods

    Here, we investigated plastome features of the tribe Opuntieae, the remarkable prickly pear cacti, which represent one of the most diverse and important lineages of Cactaceae. We assembled de novo the plastome of 43 species, representing a comprehensive sampling of the tribe, including all seven genera, and analysed their evolution in a phylogenetic comparative framework. Phylogenomic analyses with different datasets (full plastome sequences and genes only) were performed, followed by congruence analyses to assess signals underlying contentious nodes.

    Key Results

    Plastomes varied considerably in length, from 121 to 162 kbp, with striking differences in the content and size of the IR region (contraction and expansion events), including a lack of the canonical IR in some lineages and the pseudogenization or loss of some genes. Overall, nine different types of plastomes were reported, deviating in the presence of the IR region or the genes contained in the IR. Overall, plastome sequences resolved phylogenetic relationships within major clades of Opuntieae with high bootstrap values but presented some contentious nodes depending on the dataset analysed (e.g. whole plastome vs. genes only). Congruence analyses revealed that most plastidial regions lack phylogenetic resolution, while few markers are supporting the most likely topology. Likewise, alternative topologies are driven by a handful of plastome markers, suggesting recalcitrant nodes in the phylogeny.

    Conclusions

    Our study reveals a dynamic nature of plastome evolution across closely related lineages, shedding light on peculiar features of plastomes. Variation of plastome types across Opuntieae is remarkable in size, structure and content and can be important for the recognition of species in some major clades. Unravelling connections between the causes of plastome variation and the consequences for species biology, physiology, ecology, diversification and adaptation is a promising and ambitious endeavour in cactus research. Although plastome data resolved major phylogenetic relationships, the generation of nuclear genomic data is necessary to confront these hypotheses and assess the recalcitrant nodes further.

     
    more » « less