This content will become publicly available on January 1, 2024
- Editors:
- Baldauf, Sandra
- Award ID(s):
- 1441715
- Publication Date:
- NSF-PAR ID:
- 10392800
- Journal Name:
- Genome Biology and Evolution
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 1759-6653
- Sponsoring Org:
- National Science Foundation
More Like this
-
Morphological characters and nuclear ribosomal DNA (rDNA) phylogenies have so far been the basis of the current classifications of arbuscular mycorrhizal (AM) fungi. Improved understanding of the evolutionary history of AM fungi requires extensive ortholog sampling and analyses of genome and transcriptome data from a wide range of taxa. To circumvent the need for axenic culturing of AM fungi we gathered and combined genomic data from single nuclei to generate de novo genome assemblies covering seven families of AM fungi. We successfully sequenced the genomes of 15 AM fungal species for which genome data was not previously available. Comparative analysis of the previously published Rhizophagus irregularis DAOM197198 assembly confirm that our novel workflow generates genome assemblies suitable for phylogenomic analysis. Predicted genes of our assemblies, together with published protein sequences of AM fungi and their sister clades, were used for phylogenomic analyses. We evaluated the phylogenetic placement of Glomeromycota in relation to its sister phyla (Mucoromycota and Mortierellomycota), and found no support to reject a polytomy. Finally, we explored the phylogenetic relationships within Glomeromycota. Our results support family level classification from previous phylogenetic studies, and the polyphyly of the order Glomerales with Claroideoglomeraceae as the sister group to Glomeraceae andmore »
-
Abstract In the age of next-generation sequencing, the number of loci available for phylogenetic analyses has increased by orders of magnitude. But despite this dramatic increase in the amount of data, some phylogenomic studies have revealed rampant gene-tree discordance that can be caused by many historical processes, such as rapid diversification, gene duplication, or reticulate evolution. We used a target enrichment approach to sample 400 single-copy nuclear genes and estimate the phylogenetic relationships of 13 genera in the lichen-forming family Lobariaceae to address the effect of data type (nucleotides and amino acids) and phylogenetic reconstruction method (concatenation and species tree approaches). Furthermore, we examined datasets for evidence of historical processes, such as rapid diversification and reticulate evolution. We found incongruence associated with sequence data types (nucleotide vs. amino acid sequences) and with different methods of phylogenetic reconstruction (species tree vs. concatenation). The resulting phylogenetic trees provided evidence for rapid and reticulate evolution based on extremely short branches in the backbone of the phylogenies. The observed rapid and reticulate diversifications may explain conflicts among gene trees and the challenges to resolving evolutionary relationships. Based on divergence times, the diversification at the backbone occurred near the Cretaceous-Paleogene (K-Pg) boundary (65 Mya) whichmore »
-
Purpose A better knowledge of how deadwood decomposes is critical for accurately characterizing carbon and nutrient cycling in forests. Fungi dominate this decomposition process, but we still have limited understanding of fungal community structuring that ultimately controls the fate of wood decomposition. This is particularly true in tropical ecosystems. To address this knowledge gap, our study capitalized on an extreme storm event that caused a large and synchronized input of deadwood to the forest floor. Methods Here we report data for the first year of wood decomposition of trees in a Puerto Rican dry forest for nine tree species that were snapped by Hurricane Maria in 2017. We measured wood properties and the associated fungal communities after 12 months of decomposition and compared them with initial wood properties and stem-inhabiting fungal communities to identify the best predictors of wood decomposition rates and chemical changes. Results Changes in wood chemistry were primarily explained by rapid xylan losses, the main hemicellulose component for the studied tree species. Fungal communities were dominated by saprotrophic and plant pathogenic fungi and showed moderate changes over time. The initial relative abundances and ratios of different fungal functional guilds were significant predictors of both xylan and glucanmore »
-
Hug, Laura A. (Ed.)ABSTRACT Secondary metabolite clusters (SMCs) encode the machinery for fungal toxin production. However, understanding their function and analyzing their products requires investigation of the developmental and environmental conditions in which they are expressed. Gene expression is often restricted to specific and unexamined stages of the life cycle. Therefore, we applied comparative genomics analyses to identify SMCs in Neurospora crassa and analyzed extensive transcriptomic data spanning nine independent experiments from diverse developmental and environmental conditions to reveal their life cycle-specific gene expression patterns. We reported 20 SMCs comprising 177 genes—a manageable set for investigation of the roles of SMCs across the life cycle of the fungal model N. crassa —as well as gene sets coordinately expressed in 18 predicted SMCs during asexual and sexual growth under three nutritional and two temperature conditions. Divergent activity of SMCs between asexual and sexual development was reported. Of 126 SMC genes that we examined for knockout phenotypes, al-2 and al-3 exhibited phenotypes in asexual growth and conidiation, whereas os-5 , poi-2 , and pmd-1 exhibited phenotypes in sexual development. SMCs with annotated function in mating and crossing were actively regulated during the switch between asexual and sexual growth. Our discoveries call for attention to rolesmore »
-
Abstract Alignment is a crucial issue in molecular phylogenetics because different alignment methods can potentially yield very different topologies for individual genes. But it is unclear if the choice of alignment methods remains important in phylogenomic analyses, which incorporate data from dozens, hundreds, or thousands of genes. For example, problematic biases in alignment might be multiplied across many loci, whereas alignment errors in individual genes might become irrelevant. The issue of alignment trimming (i.e. removing poorly aligned regions or missing data from individual genes) is also poorly explored. Here, we test the impact of 12 different combinations of alignment and trimming methods on phylogenomic analyses. We compare these methods using published phylogenomic data from ultraconserved elements (UCEs) from squamate reptiles (lizards and snakes), birds, and tetrapods. We compare the properties of alignments generated by different alignment and trimming methods (e.g., length, informative sites, missing data). We also test whether these datasets can recover well-established clades when analyzed with concatenated (RAxML) and species-tree methods (ASTRAL-III), using the full data (∼5,000 loci) and subsampled datasets (10% and 1% of loci). We show that different alignment and trimming methods can significantly impact various aspects of phylogenomic datasets (e.g. length, informative sites). However, thesemore »