Abstract. Plume-SPH provides the first particle-based simulation ofvolcanic plumes. Smoothed particle hydrodynamics (SPH) has several advantagesover currently used mesh-based methods in modeling of multiphase freeboundary flows like volcanic plumes. This tool will provide more accurateeruption source terms to users of volcanic ash transport anddispersion models (VATDs), greatly improving volcanic ash forecasts. The accuracy ofthese terms is crucial for forecasts from VATDs, and the 3-D SPH modelpresented here will provide better numerical accuracy. As an initial effortto exploit the feasibility and advantages of SPH in volcanic plume modeling,we adopt a relatively simple physics model (3-D dusty-gas dynamic modelassuming well-mixed eruption material, dynamic equilibrium and thermodynamicequilibrium between erupted material and air that entrained into the plume,and minimal effect of winds) targeted at capturing the salient features of avolcanic plume. The documented open-source code is easily obtained andextended to incorporate other models of physics of interest to the largecommunity of researchers investigating multiphase free boundary flows ofvolcanic or other origins. The Plume-SPH code (https://doi.org/10.5281/zenodo.572819) also incorporates several newly developed techniques inSPH needed to address numerical challenges in simulating multiphasecompressible turbulent flow. The code should thus be also of general interestto the much larger community of researchers using and developing SPH-basedtools. In particular, the SPH−ε turbulence model is used to capturemixing at unresolved scales. Heat exchange due to turbulence is calculated bya Reynolds analogy, and a corrected SPH is used to handle tensile instabilityand deficiency of particle distribution near the boundaries. We alsodeveloped methodology to impose velocity inlet and pressure outlet boundaryconditions, both of which are scarce in traditional implementations of SPH. The core solver of our model is parallelized with the message passinginterface (MPI) obtaining good weak and strong scalability using novel techniquesfor data management using space-filling curves (SFCs), object creationtime-based indexing and hash-table-based storage schemes. These techniques areof interest to researchers engaged in developing particles in cell-typemethods. The code is first verified by 1-D shock tube tests, then bycomparing velocity and concentration distribution along the central axis andon the transverse cross with experimental results of JPUE (jet or plume thatis ejected from a nozzle into a uniform environment). Profiles of severalintegrated variables are compared with those calculated by existing 3-D plumemodels for an eruption with the same mass eruption rate (MER) estimated forthe Mt. Pinatubo eruption of 15 June 1991. Our results are consistent withexisting 3-D plume models. Analysis of the plume evolution processdemonstrates that this model is able to reproduce the physics of plumedevelopment.
more »
« less
Simulating Hydrodynamics in Cosmology with CRK-HACC
Abstract We introduce CRK-HACC, an extension of the Hardware/Hybrid Accelerated Cosmology Code (HACC), to resolve gas hydrodynamics in large-scale structure formation simulations of the universe. The new framework couples the HACC gravitationalN-body solver with a modern smoothed-particle hydrodynamics (SPH) approach called conservative reproducing kernel SPH (CRKSPH). CRKSPH utilizes smoothing functions that exactly interpolate linear fields while manifestly preserving conservation laws (momentum, mass, and energy). The CRKSPH method has been incorporated to accurately model baryonic effects in cosmology simulations—an important addition targeting the generation of precise synthetic sky predictions for upcoming observational surveys. CRK-HACC inherits the codesign strategies of the HACC solver and is built to run on modern GPU-accelerated supercomputers. In this work, we summarize the primary solver components and present a number of standard validation tests to demonstrate code accuracy, including idealized hydrodynamic and cosmological setups, as well as self-similarity measurements.
more »
« less
- Award ID(s):
- 1652522
- PAR ID:
- 10392823
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Supplement Series
- Volume:
- 264
- Issue:
- 2
- ISSN:
- 0067-0049
- Format(s):
- Medium: X Size: Article No. 34
- Size(s):
- Article No. 34
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The amount of vapor in the impact-generated protolunar disk carries implications for the dynamics, devolatilization, and moderately volatile element isotope fractionation during lunar formation. The equation of state (EoS) used in simulations of the giant impact is required to calculate the vapor mass fraction (VMF) of the modeled protolunar disk. Recently, a new version of M-ANEOS (Stewart M-ANEOS) was released with an improved treatment of heat capacity and expanded experimental Hugoniot. Here, we compare this new M-ANEOS version with a previous version (N-SPH M-ANEOS) and assess the resulting differences in smoothed particle hydrodynamics (SPH) simulations. We find that Stewart M-ANEOS results in cooler disks with smaller values of VMF and in differences in disk mass that are dependent on the initial impact angle. We also assess the implications of the minimum “cutoff” density (ρc), similar to a maximum smoothing length, that is set as a fast-computing alternative to an iteratively calculated smoothing length. We find that the low particle resolution of the disk typically results in >40% of disk particles falling toρc, influencing the dynamical evolution and VMF of the disk. Our results show that the choice of EoS,ρc, and particle resolution can cause the VMF and disk mass to vary by tens of percent. Moreover, small values ofρcproduce disks that are prone to numerical instability and artificial shocks. We recommend that future giant impact SPH studies review smoothing methods and ensure the thermodynamic stability of the disk over simulated time.more » « less
-
Abstract BackgroundThe development of the central nervous system (CNS) requires critical cell signaling molecules to coordinate cell proliferation and migration in order to structure the adult tissue. Chicken tumor virus #10 Regulator of Kinase (CRK) and CRK‐like (CRKL) are adaptor proteins with pre‐metazoan ancestry and are known to be required for patterning laminated structures downstream of Reelin (RELN), such as the cerebral cortex, cerebellum, and hippocampus. CRK and CRKL also play crucial roles in a variety of other growth factor and extracellular matrix signaling cascades. The neuronal retina is another highly laminated structure within the CNS that is dependent on migration for proper development, but the cell signaling mechanisms behind neuronal positioning in the retina are only partly understood. ResultsWe find thatcrkandcrklhave largely overlapping expression within the developing zebrafish nervous system. We find that their disruption results in smaller eye size and loss of retinal lamination. ConclusionsOur data indicate that Crk adaptors are critical for proper development of the zebrafish neural retina in acrk/crkldose‐dependent manner.more » « less
-
We present a multi-scale mathematical model and a novel numerical solver to study blood plasma flow and oxygen concentration in a prototype model of an implantable Bioartificial Pancreas (iBAP) that operates under arteriovenous pressure differential without the need for immunosuppressive therapy. The iBAP design consists of a poroelastic cell scaffold containing the healthy transplanted cells, encapsulated between two semi-permeable nano-pore size membranes to prevent the patient’s own immune cells from attacking the transplant. The device is connected to the patient’s vascular system via an anastomosis graft bringing oxygen and nutrients to the transplanted cells of which oxygen is the limiting factor for long-term viability. Mathematically, we propose a (nolinear) fluid–poroelastic structure interaction model to describe the flow of blood plasma through the scaffold containing the cells, and a set of (nonlinear) advection–reaction–diffusion equations defined on moving domains to study oxygen supply to the cells. These macro-scale models are solved using finite element method based solvers. One of the novelties of this work is the design of a novel second-order accurate fluid–poroelastic structure interaction solver, for which we prove that it is unconditionally stable. At the micro/nano-scale, Smoothed Particle Hydrodynamics (SPH) simulations are used to capture the micro/nano-structure (architecture) of cell scaffolds and obtain macro-scale parameters, such as hydraulic conductivity/permeability, from the micro-scale scaffold-specific architecture. To avoid expensive micro-scale simulations based on SPH simulations for every new scaffold architecture, we use Encoder–Decoder Convolution Neural Networks. Based on our numerical simulations, we propose improvements in the current prototype design. For example, we show that highly elastic scaffolds have a higher capacity for oxygen transfer, which is an important finding considering that scaffold elasticity can be controlled during their fabrication, and that elastic scaffolds improve cell viability. The mathematical and computational approaches developed in this work provide a benchmark tool for computational analysis of not only iBAP, but also, more generally, of cell encapsulation strategies used in the design of devices for cell therapy and bio-artificial organs.more » « less
-
Abstract We propose a new approach for performing drained and undrained loading of elastoplastic geomaterials over large deformations using smoothed particle hydrodynamics (SPH), a meshfree continuum particle method, combined with the modified Cam Clay (MCC) model of critical state soil mechanics. The numerical approach draws upon a novel one‐particle two‐phase penalty‐method based formulation for handling undrained loading in saturated soils, which allows tracking of the buildup of pore‐water pressures under combined shearing and compression. Large‐scale parallelized simulations are employed to accommodate a significant number of degrees of freedom in a three‐dimensional setting. After verification and benchmark testing, the SPH based formulation is used to analyze the propagation of reverse faults through fluid‐saturated clay deposits and the rupture of strike‐slip faults across earthen embankments. The computational methodology tests the robustness of the meshfree approach in situations where the soil tends to dilate on the ‘dry’ side of the critical state line and to compact on the ‘wet’ side, but cannot, because of the incompressibility constraint imposed by undrained loading. Our results extend the current understanding of fault rupture modeling and further demonstrate the potential of our framework together with the SPH method for large deformation analyses of complex problems in geotechnics.more » « less
An official website of the United States government
