skip to main content

Title: Plume-SPH 1.0: a three-dimensional, dusty-gas volcanic plume model based on smoothed particle hydrodynamics

Abstract. Plume-SPH provides the first particle-based simulation ofvolcanic plumes. Smoothed particle hydrodynamics (SPH) has several advantagesover currently used mesh-based methods in modeling of multiphase freeboundary flows like volcanic plumes. This tool will provide more accurateeruption source terms to users of volcanic ash transport anddispersion models (VATDs), greatly improving volcanic ash forecasts. The accuracy ofthese terms is crucial for forecasts from VATDs, and the 3-D SPH modelpresented here will provide better numerical accuracy. As an initial effortto exploit the feasibility and advantages of SPH in volcanic plume modeling,we adopt a relatively simple physics model (3-D dusty-gas dynamic modelassuming well-mixed eruption material, dynamic equilibrium and thermodynamicequilibrium between erupted material and air that entrained into the plume,and minimal effect of winds) targeted at capturing the salient features of avolcanic plume. The documented open-source code is easily obtained andextended to incorporate other models of physics of interest to the largecommunity of researchers investigating multiphase free boundary flows ofvolcanic or other origins.

The Plume-SPH code ( also incorporates several newly developed techniques inSPH needed to address numerical challenges in simulating multiphasecompressible turbulent flow. The code should thus be also of general interestto the much larger community of researchers using and developing SPH-basedtools. In particular, the SPHε turbulence model is used to capturemixing at unresolved scales. Heat exchange due to turbulence is calculated bya Reynolds analogy, and a corrected SPH is used to handle tensile instabilityand deficiency of particle distribution near the boundaries. We alsodeveloped methodology to impose velocity inlet and pressure outlet boundaryconditions, both of which are scarce in traditional implementations of SPH.

The core solver of our model is parallelized with the message passinginterface (MPI) obtaining good weak and strong scalability using novel techniquesfor data management using space-filling curves (SFCs), object creationtime-based indexing and hash-table-based storage schemes. These techniques areof interest to researchers engaged in developing particles in cell-typemethods. The code is first verified by 1-D shock tube tests, then bycomparing velocity and concentration distribution along the central axis andon the transverse cross with experimental results of JPUE (jet or plume thatis ejected from a nozzle into a uniform environment). Profiles of severalintegrated variables are compared with those calculated by existing 3-D plumemodels for an eruption with the same mass eruption rate (MER) estimated forthe Mt. Pinatubo eruption of 15 June 1991. Our results are consistent withexisting 3-D plume models. Analysis of the plume evolution processdemonstrates that this model is able to reproduce the physics of plumedevelopment.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Geoscientific Model Development
Page Range / eLocation ID:
2691 to 2715
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    During explosive volcanic eruptions, volcanic ash is ejected into the atmosphere, impacting aircraft safety and downwind communities. These volcanic clouds tend to be dominated by fine ash (<63 μm in diameter), permitting transport over hundreds to thousands of kilometers. However, field observations show that much of this fine ash aggregates into clusters or pellets with faster settling velocities than individual particles. Models of ash transport and deposition require an understanding of aggregation processes, which depend on factors like moisture content and local particle collision rates. In this study, we develop a Plume Model for Aggregate Prediction, a one‐dimensional (1D) volcanic plume model that predicts the plume rise height, concentration of water phases, and size distribution of resulting ash aggregates from a set of eruption source parameters. The plume model uses a control volume approach to solve mass, momentum, and energy equations along the direction of the plume axis. The aggregation equation is solved using a fixed pivot technique and incorporates a sticking efficiency model developed from analog laboratory experiments of particle aggregation within a novel turbulence tower. When applied to the 2009 eruption of Redoubt Volcano, Alaska, the 1D model predicts that the majority of the plume is over‐saturated with water, leading to a high rate of aggregation. Although the mean grain size of the computed Redoubt aggregates is larger than the measured deposits, with a peak at 1 mm rather than 500 μm, the present results provide a quantitative estimate for the magnitude of aggregation in an eruption.

    more » « less
  2. Abstract

    Explosive eruptions expel volcanic gases and particles at high pressures and velocities. Within this multiphase fluid, small ash particles affect the flow dynamics, impacting mixing, entrainment, turbulence, and aggregation. To examine the role of turbulent particle behavior, we conducted an analogue experiment using a particle‐laden jet. We used compressed air as the carrier fluid, considering turbulent conditions at Reynolds numbers from approximately 5,000 to 20,000. Two different particles were examined: 14‐μm diameter solid nickel spheres and 13‐μm diameter hollow glass spheres. These resulted in Stokes numbers between 1 and 35 based on the convective scale. The particle mass percentage in the mixture is varied from 0.3% to more than 20%. Based on a 1‐D volcanic plume model, these Stokes numbers and mass loadings corresponded to millimeter‐scale particle diameters at heights of 4–8 km above the vent during large, sustained eruptions. Through particle image velocimetry, we measured the mean flow behavior and the turbulence statistics in the near‐exit region, primarily focusing on the dispersed phase. We show that the flow behavior is dominated by the particle inertia, with high Stokes numbers reducing the entrainment by more than 40%. When applied to volcanic plumes, these results suggest that high‐density particles can greatly increase the probability of column collapse.

    more » « less
  3. Abstract

    Explosive volcanic eruptions are one of the most important driver of climate variability. Yet, we still lack a fundamental understanding of how climate change may affect future eruptions. Here, we use an ensemble of simulations by 1‐D and 3‐D volcanic plume models spanning a large range of eruption source and atmospheric conditions to assess changes in the dynamics of future eruptive columns. Our results shed new light on differences between the predictions of 1‐D and 3‐D plume models. Furthermore, both models suggest that as a result of ongoing climate change, for tropical eruptions, (i) higher eruption intensities will be required for plumes to reach the upper troposphere/lower stratosphere and (ii) the height of plumes currently reaching the upper troposphere/lower stratosphere or above will increase. We discuss the implications of these results for the climatic impacts of future eruptions. Our simulations can directly inform climate model experiments on climate‐volcano feedback.

    more » « less
  4. Abstract

    Seismic waves are commonly used to monitor unrest before, during, and after volcanic eruptions. The source of seismic tremor during a sustained explosive volcanic eruption is not well understood. Recent observations of the 2016 eruption of Pavlof Volcano, Alaska, revealed a change in the relationship (hysteresis) between ash plume height and seismic amplitude over time. Based on similarities in physical processes and observed seismic tremor in rivers, we explore two key sources of seismic energy in the volcanic conduit: (1) forces exerted by particle impacts and (2) dynamic pressure changes by the turbulent flow. We develop a physical model calculating the seismic power spectral density (PSD), where forces on the conduit wall are convolved with the Green's function for Rayleigh waves. Using reasonable eruption parameters, the model is able to reproduce the frequency spectrum from the Pavlof eruption, although the modeled amplitudes are generally lower. We test the relative importance of different eruption parameters, including grain size, velocity, and conduit dimensions. We find that turbulence generally dominates over particle impacts. However, to reach the PSD amplitude during the Pavlof eruption, large grain sizes are required, as they have the greatest relative influence on the modeled amplitude. The hysteresis between plume height and seismic amplitude can then potentially be explained by grain size changes. The PSD shape is mostly determined by the Rayleigh‐wave quality factor Q, and substantial variations in seismic amplitude can be modeled assuming a constant mass eruption rate.

    more » « less
  5. Abstract

    Over the last decades, remote observation tools and models have been developed to improve the forecasting of ash‐rich volcanic plumes. One challenge in these forecasts is knowing the properties at the vent, including the mass eruption rate and grain size distribution (GSD). Volcanic lightning is a common feature of explosive eruptions with high mass eruption rates of fine particles. The GSD is expected to play a major role in generating lightning in the gas thrust region via triboelectrification. Here, we experimentally investigate the electrical discharges of volcanic ash as a function of varying GSD. We employ two natural materials, a phonolitic pumice and a tholeiitic basalt (TB), and one synthetic material (soda‐lime glass beads [GB]). For each of the three materials, coarse and fine grain size fractions with known GSDs are mixed, and the particle mixture is subjected to rapid decompression. The experiments are observed using a high‐speed camera to track particle‐gas dispersion dynamics during the experiments. A Faraday cage is used to count the number and measure the magnitude of electrical discharge events. Although quite different in chemical composition, TB and GB show similar vent dynamics and lightning properties. The phonolitic pumice displays significantly different ejection dynamics and a significant reduction in lightning generation. We conclude that particle‐gas coupling during an eruption, which in turn depends on the GSD and bulk density, plays a major role in defining the generation of lightning. The presence of fines, a broad GSD, and dense particles all promote lightning.

    more » « less