skip to main content


Search for: All records

Award ID contains: 1913501

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Recent international agreements have strengthened and expanded commitments to protect and restore native habitats for biodiversity protection (“area‐based biodiversity conservation”). Nevertheless, biodiversity conservation is hindered because how such commitments should be implemented has been strongly debated, which can lead to suboptimal habitat protection decisions. We argue that, despite the debates, there are three essential principles for area‐based biodiversity conservation. These principles are related to habitat geographic coverage, amount, and connectivity. They emerge from evidence that, while large areas of nature are important and must be protected, conservation or restoration of multiple small habitat patches is also critical for global conservation, particularly in regions with high land use. We contend that the many area‐based conservation initiatives expected in the coming decades should follow the principles we identify, regardless of ongoing debates. Considering the importance of biodiversity for maintenance of ecosystem services, we suggest that this would bring widespread societal benefits.

     
    more » « less
    Free, publicly-accessible full text available June 1, 2025
  2. Abstract Fragmentation and scale

    Although habitat loss has well‐known impacts on biodiversity, the effects of habitat fragmentation remain intensely debated. It is often argued that the effects of habitat fragmentation, or the breaking apart of habitat for a given habitat amount, can be understood only at the scale of entire landscapes composed of multiple habitat patches. Yet, fragmentation also impacts the size, isolation and habitat edge for individual patches within landscapes. Addressing the problem of scale on fragmentation effects is crucial for resolving how fragmentation impacts biodiversity.

    Scaling framework

    We build upon scaling concepts in ecology to describe a framework that emphasizes three “dimensions” of scale in habitat fragmentation research: the scales of phenomena (or mechanisms), sampling and analysis. Using this framework, we identify ongoing challenges and provide guidance for advancing the science of fragmentation.

    Implications

    We show that patch‐ and landscape‐scale patterns arising from habitat fragmentation for a given amount of habitat are fundamentally related, leading to interdependencies among expected patterns arising from different scales of phenomena. Aggregation of information when increasing the grain of sampling (e.g., from patch to landscape) creates challenges owing to biases created from the modifiable areal unit problem. Consequently, we recommend that sampling strategies use the finest grain that captures potential underlying mechanisms (e.g., plot or patch). Study designs that can capture phenomena operating at multiple spatial extents offer the most promise for understanding the effects of fragmentation and its underlying mechanisms. By embracing the interrelationships among scales, we expect more rapid advances in our understanding of habitat fragmentation.

     
    more » « less
  3. Abstract Context

    Habitat fragmentation is a leading threat to biodiversity, yet the impacts of fragmentation on most taxa, let alone interactions among those taxa, remain largely unknown.

    Objectives

    We studied how three consequences of fragmentation—reduced patch connectivity, altered patch shape, and edge proximity—impact plant-dwelling mite communities and mite-plant-fungus interactions within a large-scale habitat fragmentation experiment.

    Methods

    We sampled mite communities from the leaves ofQuercus nigra(a plant species that has foliar domatia which harbor fungivorous and predacious mites) near and far from edge within fragments of varying edge-to-area ratio (shape) and connectivity via corridors. We also performed a mite-exclusion experiment across these fragmentation treatments to test the effects of mite presence and fungal hyphal abundance on leaf surfaces.

    Results

    Habitat edges influenced the abundance and richness of leaf-dwelling mites; plants closer to the edge had higher mite abundance and species richness. Likewise, hyphal counts were higher on leaves near patch edges. Despite both mite and fungal abundance being higher at patch edges, leaf hyphal counts were not impacted by mite abundance on those leaves. Neither patch shape nor connectivity influenced mite abundance, mite species richness, or the influence of mites on leaf surface fungal abundance.

    Conclusion

    Our results suggest that mites and foliar fungi may be independently affected by edge-structured environmental gradients, like temperature, rather than trophic effects. We demonstrate that large-scale habitat fragmentation and particularly edge effects can have impacts on multiple levels of microscopic communities, even in the absence of cascading trophic effects.

     
    more » « less
  4. Abstract

    Ecological restoration is beneficial to ecological communities in this era of large‐scale landscape change and ecological disruption. However, restoration outcomes are notoriously variable, which makes fine‐scale decision‐making challenging. This is true for restoration efforts that follow large fires, which are increasingly common as the climate changes.

    Post‐fire restoration efforts, like tree planting and seeding have shown mixed success, though the causes of the variation in restoration outcomes remain unclear. Abiotic factors such as elevation and fire severity, as well as biotic factors, such as residual canopy cover and abundance of competitive understorey grasses, can vary across a burned area and may all influence the success of restoration efforts to re‐establish trees following forest fires.

    We examined the effect of these factors on the early seedling establishment of a tree species—māmane (Sophora chrysophylla)—in a subtropical montane woodland in Hawaiʻi. Following a human‐caused wildfire, we sowed seeds of māmane as part of a restoration effort. We co‐designed a project to examine māmane seedling establishment.

    We found that elevation was of overriding importance, structuring total levels of plant establishment, with fewer seedlings establishing at higher elevations. Residual canopy cover was positively correlated with seedling establishment, while cover by invasive, competitive understorey grasses very weakly positively correlated with increased seedling establishment.

    Our results point to specific factors structuring plant establishment following a large fire and suggest additional targeted restoration actions within this subtropical system. For example, if greater native woody recruitment is a management goal, then actions could include targeted seed placement at lower elevations where establishment is more likely, increased seeding densities at high elevation where recruitment rates are lower, and/or invasive grass removal prior to seeding. Such actions may result in faster native ecosystem recovery, which is a goal of local land managers.

     
    more » « less
  5. Abstract

    Habitat fragmentation impacts ecosystems worldwide through habitat loss, reduced connectivity, and edge effects. Yet, these landscape factors are often confounded, leaving much to be investigated about their relative effects, especially on species interactions. In a landscape experiment, we investigated the consequences of connectivity and edge effects for seed dispersal by ants. We found that ants dispersed seeds farther in habitat patches connected by corridors, but only in patch centers. We did not see an effect on the total number of seeds moved or the rate ants detected seeds. Furthermore, we did not see any differences in ant community composition across patch types, suggesting that shifts in ant behavior or other factors increased ant seed dispersal in patches connected by corridors. Long‐distance seed dispersal by ants that requires an accumulation of short‐distance dispersal events over generations may be an underappreciated mechanism through which corridors increase plant diversity.

     
    more » « less
  6. Abstract

    Although plant–soil feedbacks (interactions between plants and soils, often mediated by soil microbes, abbreviated as PSFs) are widely known to influence patterns of plant diversity at local and landscape scales, these interactions are rarely examined in the context of important environmental factors. Resolving the roles of environmental factors is important because the environmental context may alter PSF patterns by modifying the strength or even direction of PSFs for certain species. One important environmental factor that is increasing in scale and frequency with climate change is fire, though the influence of fire on PSFs remains essentially unexamined. By changing microbial community composition, fire may alter the microbes available to colonize the roots of plants and thus seedling growth post‐fire. This has potential to change the strength and/or direction of PSFs, depending on how such changes in microbial community composition occur and the plant species with which the microbes interact. We examined how a recent fire altered PSFs of two leguminous, nitrogen‐fixing tree species in Hawaiʻi. For both species, growing in conspecific soil resulted in higher plant performance (as measured by biomass production) than growing in heterospecific soil. This pattern was mediated by nodule formation, an important process for growth for legume species. Fire weakened PSFs for these species and therefore pairwise PSFs, which were significant in unburned soils, but were nonsignificant in burned soils. Theory suggests that positive PSFs such as those found in unburned sites would reinforce the dominance of species where they are locally dominant. The change in pairwise PSFs with burn status shows PSF‐mediated dominance might diminish after fire. Our results demonstrate that fire can modify PSFs by weakening the legume‐rhizobia symbiosis, which may alter local competitive dynamics between two canopy dominant tree species. These findings illustrate the importance of considering environmental context when evaluating the role of PSFs for plants.

     
    more » « less
  7. Abstract

    Although corridors are frequently regarded as a way to mitigate the negative effects of habitat fragmentation, concerns persist that corridors may facilitate the spread of invasive species to the detriment of native species.

    The invasive fire ant,Solenopsis invicta,has two social forms. The polygyne form has limited dispersal abilities relative to the monogyne form. Our previous work in a large‐scale corridor experiment showed that in landscapes dominated by the polygyne form, fire ant density was higher and native ant species richness was lower in habitat patches connected by corridors than in unconnected patches.

    We expected that these observed corridor effects would be transient, that is, that fire ant density and native ant species richness differences between connected and unconnected patches would diminish over time as fire ants eventually fully established within patches. We tested this prediction by resampling the three landscapes dominated by polygyne fire ants 6 to 11 years after our original study.

    Differences in fire ant density between connected and unconnected habitat patches in these landscapes decreased, as expected. Differences in native ant species richness were variable but lowest in the last 2 years of sampling.

    These findings support our prediction of transient corridor effects on this invasive ant and stress the importance of temporal dynamics in assessing population and community impacts of habitat connectivity.

     
    more » « less
  8. Abstract

    Habitat loss and fragmentation are leading causes of species declines, driven in part by reduced dispersal. Isolating the effects of fragmentation on dispersal, however, is daunting because the consequences of fragmentation are typically intertwined, such as reduced connectivity and increased prevalence of edge effects. We used a large‐scale landscape experiment to separate consequences of fragmentation on seed dispersal, considering both distance and direction of local dispersal. We evaluated seed dispersal for five wind‐ or gravity‐dispersed, herbaceous plant species that were planted at different distances from habitat edges, within fragments that varied in their connectivity and shape (edge‐to‐area ratio). Dispersal distance was affected by proximity and direction relative to the nearest edge. For four of five species, dispersal distances were greater further from habitat edges and when seeds dispersed in the direction of the nearest edge. Connectivity and patch edge‐to‐area ratio had minimal effects on local dispersal. Our findings illustrate how some, but not all, landscape changes associated with fragmentation can affect the key population process of seed dispersal.

     
    more » « less
  9. This data release includes data and metadata on plant and substrate cover, seedling counts, canopy cover, burn severity, and location information for plots that were established to monitor the efficacy of post-fire seed addition in Hawaiʻi Volcanoes National Park on the Island of Hawaiʻi. 
    more » « less