skip to main content


Title: Similarities in biomass and energy reserves among coral colonies from contrasting reef environments
Abstract

Coral reefs are declining worldwide, yet some coral populations are better adapted to withstand reductions in pH and the rising frequency of marine heatwaves. The nearshore reef habitats of Palau, Micronesia are a proxy for a future of warmer, more acidic oceans. Coral populations in these habitats can resist, and recover from, episodes of thermal stress better than offshore conspecifics. To explore the physiological basis of this tolerance, we compared tissue biomass (ash-free dry weight cm−2), energy reserves (i.e., protein, total lipid, carbohydrate content), and several important lipid classes in six coral species living in both offshore and nearshore environments. In contrast to expectations, a trend emerged of many nearshore colonies exhibiting lower biomass and energy reserves than colonies from offshore sites, which may be explained by the increased metabolic demand of living in a warmer, acidic, environment. Despite hosting different dinoflagellate symbiont species and having access to contrasting prey abundances, total lipid and lipid class compositions were similar in colonies from each habitat. Ultimately, while the regulation of colony biomass and energy reserves may be influenced by factors, including the identity of the resident symbiont, kind of food consumed, and host genetic attributes, these independent processes converged to a similar homeostatic set point under different environmental conditions.

 
more » « less
Award ID(s):
1719684
NSF-PAR ID:
10392861
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
13
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Reef‐building corals in the genusPoritesare one of the most important constituents of Indo‐Pacific reefs. Many species within this genus tolerate abnormally warm water and exhibit high specificity for particular kinds of endosymbiotic dinoflagellates that cope with thermal stress better than those living in other corals. Still, during extreme ocean heating, somePoritesexhibit differences in their stress tolerance. While corals have different physiological qualities, it remains unknown whether the stability and performance of these mutualisms is influenced by the physiology and genetic relatedness of their symbionts. We investigated two ubiquitous Pacific reef corals,Porites rusandPorites cylindrica, from warmer inshore and cooler offshore reef systems in Palau. While these corals harbored a similar kind of symbiont in the genusCladocopium(within the ITS2C15 subclade), rapidly evolving genetic markers revealed evolutionarily diverged lineages corresponding to eachPoritesspecies living in each reef habitat. Furthermore, these closely relatedCladocopiumlineages were differentiated by their densities in host tissues, cell volume, chlorophyll concentration, gross photosynthesis, and photoprotective pathways. When assessed using several physiological proxies, these previously undifferentiated symbionts contrasted in their tolerance to thermal stress. Symbionts withinP.cylindricawere relatively unaffected by exposure to 32℃ for 14 days, whereasP.ruscolonies lost substantial numbers of photochemically compromised symbionts. Heating reduced the ability of the offshore symbiont associated withP.rusto translocate carbon to the coral. By contrast, high temperatures enhanced symbiont carbon assimilation and delivery to the coral skeleton of inshoreP.cylindrica. This study indicates that large physiological differences exist even among closely related symbionts, with significant implications for thermal susceptibility among reef‐buildingPorites.

     
    more » « less
  2. Abstract

    Framework‐building corals create the three‐dimensional structure of coral reefs and are subject to predation from fishes, echinoderms, and gastropods. Anthropogenic stressors can magnify the effects of such top‐down pressure on foundation species. The gastropodCoralliophilaviolacea(Kiener, 1836) depletes coral energy reserves via predation, potentially increasing coral susceptibility to land‐based pollution (i.e., sediment accumulation and nutrient pollution). We hypothesized that sedimentation would worsen coral mortality, while nutrient enrichment would mitigate the harmful effects of sediment and predation on coral mortality by increasing the densities of algal symbionts. To test these hypotheses, we conducted in situ surveys of the fringing reefs in Mo'orea, French Polynesia to explore the relationships among massivePoritesspp. cover,C. violaceadensities, and sediment accumulation on coral colonies across low and high nutrient sites. We also conducted a factorial field experiment to test the interactions among these stressors on coral tissue mortality, symbiont densities, and chlorophyll. MassivePoritescolonies at higher nutrient sites hadC. violaceadensities 13 times higher than at low nutrient sites but there was no difference in the amount of live tissue on coral colonies with or without snails among these sites. In our experiment, there were interactions between predation and nutrients as well as nutrients and sediment that impacted coral mortality. Sedimentation and predation byC. violaceaincreased coral tissue mortality independently by ~20%. Nutrient enrichment reduced this effect in corals under sedimentation or predation pressure by lowering coral tissue mortality by 18% and increasing algal symbiont densities by ~28%. Our results indicate that sediment does not magnify top‐down pressure on this coral, and that moderate nutrient enrichment may interact with predation in complex, unexpected ways to alter the responses of corals to top‐down pressure.

     
    more » « less
  3. Abstract

    Mass thermal bleaching events are a primary threat to coral reefs, yet the sublethal impacts, particularly on energetics and reproduction, are poorly characterized. Given that the persistence of coral populations is contingent upon the reproduction of individuals that survive disturbances, there is an urgent need to understand the sublethal effects of bleaching on reproductive output to accurately predict coral recovery rates. In 2019, the French Polynesian island of Mo’orea experienced a severe mass bleaching event accompanied by widespread coral mortality. At the most heavily impacted sites, we observedAcropora hyacinthusindividuals that were resistant to bleaching, alongside colonies that bleached but showed signs of symbiont recovery shortly after the bleaching event. We collected fragments fromA. hyacinthuscolonies five months post-bleaching and, using energetic assays and histological measurements, examined the physiological and reproductive consequences of these two distinct heat stress responses. Despite healthy appearances in both resistant and recovered corals, we found that recovered colonies had significantly reduced energy reserves compared to resistant colonies. In addition, we detected compound effects of stress on reproduction: recovered colonies displayed both a lower probability of containing gametes and lower fecundity per polyp. Our results indicate that bleaching inflicts an energetic constraint on the concurrent re-accumulation of energy reserves and development of reproductive material, with decreased reproductive potential of survivors possibly hampering overall reef resilience. These findings highlight the presence of intraspecific responses to bleaching and the importance of considering multiple trajectories for individual species when predicting population recovery following disturbance.

     
    more » « less
  4. Abstract

    The symbiotic relationship between dinoflagellate algae in the family Symbiodiniaceae and scleractinian corals forms the base of the tropical reef ecosystem. In scleractinian corals, recruits acquire symbionts either “vertically” from the maternal colony or initially lack symbionts and acquire them “horizontally” from the environment. Regardless of the mode of acquisition, coral species and individual colonies harbor only a subset of the highly diverse complex of species/taxa within the Symbiodiniaceae. This suggests a genetic basis for specificity, but local environmental conditions and/or symbiont availability may also play a role in determining which symbionts within the Symbiodiniaceae are initially taken up by the host. To address the relative importance of genetic and environmental drivers of symbiont uptake/establishment, we examined the acquisition of these dinoflagellate symbionts in one to three‐month‐old recruits ofOrbicella faveolatato compare symbiont types present in recruits to those of parental populations versus co‐occurring adults in their destination reef. Variation in chloroplast 23S ribosomal DNA and in three polymorphic microsatellite loci was examined. We found that, in general, symbiont communities within adult colonies differed between reefs, suggesting that endemism is common among symbiont populations ofO. faveolataon a local scale. Among recruits, initial symbiont acquisition was selective.O. faveolatarecruits only acquired a subset of locally available symbionts, and these generally did not reflect symbiont populations in adults at either the parental or the outplant reef. Instead, symbiont communities within new recruits at a given outplant site and region tended to be similar to each other, regardless of parental source population. These results suggest temporal variation in the local symbiont source pool, although other possible drivers behind the distinct difference between symbionts withinO. faveolataadults and new generations of recruits may include different ontogenetic requirements and/or reduced host selectivity in early ontogeny.

     
    more » « less
  5. Coastal and estuarine habitats that provide crucial nursery areas for many economically and ecologically important fish species are in decline. Restoration of benthic habitats can improve fish populations, biomass, and feeding opportunities, but there is limited research on how restoration impacts growth and survival with ontogeny. To address this knowledge gap, here we examine the biometrics (size, biomass, and body condition), recruitment, size structure, and trophic shifts of a sportfish (mangrove snapper,Lutjanus griseus) at restored oyster reefs and stabilized living shorelines to better understand how fish use restored habitats as they grow. Biomass and body condition ofL. griseusjuveniles and subadults, and post‐settlement recruitment, at restored/stabilized sites was similar, and in some cases greater than natural sites, correlating with benthic habitat, reef location, and lunar phase at oyster reefs. Living shorelines exhibited greater recruitment potential, while oyster reefs supported more juveniles and subadults, as evidenced by differences in fish size and biomass between habitats. Dietary overlap implies subadultL. griseuslikely foraged across habitats more than juveniles, while there was greater diet similarity within habitats. Furthermore, ontogenetic shifts also occurred within oyster reef habitats, highlighting the importance of quality habitat to support various sportfish life stages, which can be achieved through restoration. These findings suggest life history attributes can be indicators of habitat restoration success, and specifically provide actionable science to guide the development of more effective strategies for restoring inshore nursery habitats and thus augment production of offshore reef fisheries.

     
    more » « less