This study presents a particle filter based framework to track cardiac surface from a time sequence of single magnetic resonance imaging (MRI) slices with the future goal of utilizing the presented framework for interventional cardiovascular magnetic resonance procedures, which rely on the accurate and online tracking of the cardiac surface from MRI data. The framework exploits a low-order parametric deformable model of the cardiac surface. A stochastic dynamic system represents the cardiac surface motion. Deformable models are employed to introduce shape prior to control the degree of the deformations. Adaptive filters are used to model complex cardiac motion in the dynamic model of the system. Particle filters are utilized to recursively estimate the current state of the system over time. The proposed method is applied to recover biventricular deformations and validated with a numerical phantom and multiple real cardiac MRI datasets. The algorithm is evaluated with multiple experiments using fixed and varying image slice planes at each time step. For the real cardiac MRI datasets, the average root-mean-square tracking errors of 2.61 mm and 3.42 mm are reported respectively for the fixed and varying image slice planes. This work serves as a proof-of-concept study for modeling and tracking the cardiac surface deformations via a low-order probabilistic model with the future goal of utilizing this method for the targeted interventional cardiac procedures under MR image guidance. For the real cardiac MRI datasets, the presented method was able to track the points-of-interests located on different sections of the cardiac surface within a precision of 3 pixels. The analyses show that the use of deformable cardiac surface tracking algorithm can pave the way for performing precise targeted intracardiac ablation procedures under MRI guidance. The main contributions of this work are twofold. First, it presents a framework for the tracking of whole cardiac surface from a time sequence of single image slices. Second, it employs adaptive filters to incorporate motion information in the tracking of nonrigid cardiac surface motion for temporal coherence.
more » « less- PAR ID:
- 10392875
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
This work presents a platform that integrates a customized MRI data acquisition scheme with reconstruction and three-dimensional (3D) visualization modules along with a module for controlling an MRI-compatible robotic device to facilitate the performance of robot-assisted, MRI-guided interventional procedures. Using dynamically-acquired MRI data, the computational framework of the platform generates and updates a 3D model representing the area of the procedure (AoP). To image structures of interest in the AoP that do not reside inside the same or parallel slices, the MRI acquisition scheme was modified to collect a multi-slice set of intraoblique to each other slices; which are termed composing slices. Moreover, this approach interleaves the collection of the composing slices so the same k-space segments of all slices are collected during similar time instances. This time matching of the k-space segments results in spatial matching of the imaged objects in the individual composing slices. The composing slices were used to generate and update the 3D model of the AoP. The MRI acquisition scheme was evaluated with computer simulations and experimental studies. Computer simulations demonstrated that k-space segmentation and time-matched interleaved acquisition of these segments provide spatial matching of the structures imaged with composing slices. Experimental studies used the platform to image the maneuvering of an MRI-compatible manipulator that carried tubing filled with MRI contrast agent. In vivo experimental studies to image the abdomen and contrast enhanced heart on free-breathing subjects without cardiac triggering demonstrated spatial matching of imaged anatomies in the composing planes. The described interventional MRI framework could assist in performing real-time MRI-guided interventions.more » « less
-
Real‐time magnetic resonance imaging (RT‐MRI) allows for imaging dynamic processes as they occur, without relying on any repetition or synchronization. This is made possible by modern MRI technology such as fast‐switching gradients and parallel imaging. It is compatible with many (but not all) MRI sequences, including spoiled gradient echo, balanced steady‐state free precession, and single‐shot rapid acquisition with relaxation enhancement. RT‐MRI has earned an important role in both diagnostic imaging and image guidance of invasive procedures. Its unique diagnostic value is prominent in areas of the body that undergo substantial and often irregular motion, such as the heart, gastrointestinal system, upper airway vocal tract, and joints. Its value in interventional procedure guidance is prominent for procedures that require multiple forms of soft‐tissue contrast, as well as flow information. In this review, we discuss the history of RT‐MRI, fundamental tradeoffs, enabling technology, established applications, and current trends.
Level of Evidence 5
Technical Efficacy Stage 1
-
The segmentation of the ventricular wall and the blood pool in cardiac magnetic resonance imaging (MRI) has been inves- tigated for decades, given its important role for delineation of cardiac functioning and diagnosis of heart diseases. One of the major challenges is that the inner epicardium boundary is not always visible in the image domain, due to the mix- ture of blood and muscle structures, especially at the end of contraction, or systole. To address it, we propose a novel ap- proach for the cardiac segmentation in the short-axis (SAX) MRI: coupled deep neural networks and deformable models. First, a 2D U-Net is adopted for each magnetic resonance (MR) slice, and a 3D U-Net refines the segmentation results along the temporal dimension. Then, we propose a multi- component deformable model to extract accurate contours for both endo- and epicardium with global and local constraints. Finally, a partial blood classification is explored to estimate the presence of boundary pixels near the trabeculae and solid wall, and to avoid moving the endocardium boundary inward. Quantitative evaluation demonstrates the high accuracy, ro- bustness, and efficiency of our approach for the slices ac- quired at different locations and different cardiac phases.more » « less
-
Image-guided and robot-assisted surgical procedures are rapidly evolving due to their potential to improve patient management and cost effectiveness. Magnetic Resonance Imaging (MRI) is used for pre-operative planning and is also investigated for real-time intra-operative guidance. A new type of technology is emerging that uses the magnetic field gradients of the MR scanner to maneuver ferromagnetic agents for local delivery of therapeutics. With this approach, MRI is both a sensor and forms a closed-loop controlled entity that behaves as a robot (we refer to them as MRbots). The objective of this paper is to introduce a computational framework for preoperative planning using MRI and modeling of MRbot maneuvering inside tortuous blood vessels. This platform generates a virtual corridor that represents a safety zone inside the vessel that is then used to access the safety of the MRbot maneuvering. In addition, to improve safety we introduce a control that sets speed based on the local curvature of the vessel. The functionality of the framework was then tested on a realistic operational scenario of accessing a neurological lesion, a meningioma. This virtual case study demonstrated the functionality and potential of MRbots as well as revealed two primary challenges: real-time MRI (during propulsion) and the need of very strong gradients for maneuvering small MRbots inside narrow cerebral vessels. Our ongoing research focuses on further developing the computational core, MR tracking methods, and on-line interfacing to the MR scanner.more » « less
-
null (Ed.)Tool tip visualization is an essential component of multiple robotic surgical and interventional procedures. In this paper, we introduce a real-time photoacoustic visual servoing system that processes information directly from raw acoustic sensor data, without requiring image formation or segmentation in order to make robot path planning decisions to track and maintain visualization of tool tips. The performance of this novel deep learning-based visual servoing system is compared to that of a visual servoing system which relies on image formation followed by segmentation to make and execute robot path planning decisions. Experiments were conducted with a plastisol phantom, ex vivo tissue, and a needle as the interventional tool. Needle tip tracking performance with the deep learning-based approach outperformed that of the image-based segmentation approach by 67.7% and 55.3% in phantom and ex vivo tissue, respectively. In addition, the deep learning-based system operated within the frame-rate-limiting 10 Hz laser pulse repetition frequency rate, with mean execution times of 75.2 ms and 73.9 ms per acquisition frame with phantom and ex vivo tissue, respectively. These results highlight the benefits of our new approach to integrate deep learning with robotic systems for improved automation and visual servoing of tool tips.more » « less