skip to main content

Title: MULTI-COMPONENT DEFORMABLE MODELS COUPLED WITH 2D-3D U-NET FOR AUTOMATED PROBABILISTIC SEGMENTATION OF CARDIAC WALLS AND BLOOD
The segmentation of the ventricular wall and the blood pool in cardiac magnetic resonance imaging (MRI) has been inves- tigated for decades, given its important role for delineation of cardiac functioning and diagnosis of heart diseases. One of the major challenges is that the inner epicardium boundary is not always visible in the image domain, due to the mix- ture of blood and muscle structures, especially at the end of contraction, or systole. To address it, we propose a novel ap- proach for the cardiac segmentation in the short-axis (SAX) MRI: coupled deep neural networks and deformable models. First, a 2D U-Net is adopted for each magnetic resonance (MR) slice, and a 3D U-Net refines the segmentation results along the temporal dimension. Then, we propose a multi- component deformable model to extract accurate contours for both endo- and epicardium with global and local constraints. Finally, a partial blood classification is explored to estimate the presence of boundary pixels near the trabeculae and solid wall, and to avoid moving the endocardium boundary inward. Quantitative evaluation demonstrates the high accuracy, ro- bustness, and efficiency of our approach for the slices ac- quired at different locations and different cardiac phases.
Authors:
; ; ;
Award ID(s):
1747778
Publication Date:
NSF-PAR ID:
10105304
Journal Name:
2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)
Sponsoring Org:
National Science Foundation
More Like this
  1. This work presents a novel deep learning architecture called BNU-Net for the purpose of cardiac segmentation based on short-axis MRI images. Its name is derived from the Batch Normalized (BN) U-Net architecture for medical image segmentation. New generations of deep neural networks (NN) are called convolutional NN (CNN). CNNs like U-Net have been widely used for image classification tasks. CNNs are supervised training models which are trained to learn hierarchies of features automatically and robustly perform classification. Our architecture consists of an encoding path for feature extraction and a decoding path that enables precise localization. We compare this approach with a parallel approach named U-Net. Both BNU-Net and U-Net are cardiac segmentation approaches: while BNU-Net employs batch normalization to the results of each convolutional layer and applies an exponential linear unit (ELU) approach that operates as activation function, U-Net does not apply batch normalization and is based on Rectified Linear Units (ReLU). The presented work (i) facilitates various image preprocessing techniques, which includes affine transformations and elastic deformations, and (ii) segments the preprocessed images using the new deep learning architecture. We evaluate our approach on a dataset containing 805 MRI images from 45 patients. The experimental results reveal that ourmore »approach accomplishes comparable or better performance than other state-of-the-art approaches in terms of the Dice coefficient and the average perpendicular distance. Index Terms—Magnetic Resonance Imaging; Batch Normalization; Exponential Linear Units« less
  2. Cardiac Cine Magnetic Resonance (CMR) Imaging has made a significant paradigm shift in medical imaging technology, thanks to its capability of acquiring high spatial and temporal resolution images of different structures within the heart that can be used for reconstructing patient-specific ventricular computational models. In this work, we describe the development of dynamic patient-specific right ventricle (RV) models associated with normal subjects and abnormal RV patients to be subsequently used to assess RV function based on motion and kinematic analysis. We first constructed static RV models using segmentation masks of cardiac chambers generated from our accurate, memory-efficient deep neural architecture - CondenseUNet - featuring both a learned group structure and a regularized weight-pruner to estimate the motion of the right ventricle. In our study, we use a deep learning-based deformable network that takes 3D input volumes and outputs a motion field which is then used to generate isosurface meshes of the cardiac geometry at all cardiac frames by propagating the end-diastole (ED) isosurface mesh using the reconstructed motion field. The proposed model was trained and tested on the Automated Cardiac Diagnosis Challenge (ACDC) dataset featuring 150 cine cardiac MRI patient datasets. The isosurface meshes generated using the proposed pipeline weremore »compared to those obtained using motion propagation via traditional non-rigid registration based on several performance metrics, including Dice score and mean absolute distance (MAD).« less
  3. Heart disease is highly prevalent in developed countries, causing 1 in 4 deaths. In this work we propose a method for a fully automated 4D reconstruction of the left ventricle of the heart. This can provide accurate information regarding the heart wall motion and in particular the hemodynamics of the ventricles. Such metrics are crucial for detecting heart function anomalies that can be an indication of heart disease. Our approach is fast, modular and extensible. In our testing, we found that generating the 4D reconstruction from a set of 250 MRI images takes less than a minute. The amount of time saved as a result of our work could greatly benefit physicians and cardiologist as they diagnose and treat patients. Index Terms—Magnetic Resonance Imaging, segmentation, reconstruction, cardiac, machine learning, ventricle
  4. Puyol Anton, E ; Pop, M ; Sermesant, M ; Campello, V ; Lalande, A ; Lekadir, K ; Suinesiaputra, A ; Camara, O ; Young, A (Ed.)
    Cardiac cine magnetic resonance imaging (CMRI) is the reference standard for assessing cardiac structure as well as function. However, CMRI data presents large variations among different centers, vendors, and patients with various cardiovascular diseases. Since typical deep-learning-based segmentation methods are usually trained using a limited number of ground truth annotations, they may not generalize well to unseen MR images, due to the variations between the training and testing data. In this study, we proposed an approach towards building a generalizable deep-learning-based model for cardiac structure segmentations from multi-vendor,multi-center and multi-diseases CMRI data. We used a novel combination of image augmentation and a consistency loss function to improve model robustness to typical variations in CMRI data. The proposed image augmentation strategy leverages un-labeled data by a) using CycleGAN to generate images in different styles and b) exchanging the low-frequency features of images from different vendors. Our model architecture was based on an attention-gated U-Net model that learns to focus on cardiac structures of varying shapes and sizes while suppressing irrelevant regions. The proposed augmentation and consistency training method demonstrated improved performance on CMRI images from new vendors and centers. When evaluated using CMRI data from 4 vendors and 6 clinical center,more »our method was generally able to produce accurate segmentations of cardiac structures.« less
  5. Iron overload, a complication of repeated blood transfusions, can cause tissue damage and organ failure. The body has no regulatory mechanism to excrete excess iron, so iron overload must be closely monitored to guide therapy and measure treatment response. The concentration of iron in the liver is a reliable marker for total body iron content and is now measured noninvasively with magnetic resonance imaging (MRI). MRI produces a diagnostic image by measuring the signals emitted from the body in the presence of a constant magnetic field and radiofrequency pulses. At each pixel, the signal decay constant, T2*, can be calculated, providing insight about the structure of each tissue. Liver iron content can be quantified based on this T2* value because signal decay accelerates with increasing iron concentration. We developed a method to automatically segment the liver from the MRI image to accurately calculate iron content. Our current algorithm utilizes the active contour model for image segmentation, which iteratively evolves a curve until it reaches an edge or a boundary. We applied this algorithm to each MRI image in addition to a map of pixelwise T2* values, combining basic image processing with imaging physics. One of the limitations of this segmentationmore »model is how it handles noise in the MRI data. Recent advancements in deep learning have enabled researchers to utilize convolutional neural networks to denoise and reconstruct images. We used the Trainable Nonlinear Reaction Diffusion network architecture to denoise the MRI images, allowing for smoother segmentation while preserving fine details.« less