skip to main content


Title: MULTI-COMPONENT DEFORMABLE MODELS COUPLED WITH 2D-3D U-NET FOR AUTOMATED PROBABILISTIC SEGMENTATION OF CARDIAC WALLS AND BLOOD
The segmentation of the ventricular wall and the blood pool in cardiac magnetic resonance imaging (MRI) has been inves- tigated for decades, given its important role for delineation of cardiac functioning and diagnosis of heart diseases. One of the major challenges is that the inner epicardium boundary is not always visible in the image domain, due to the mix- ture of blood and muscle structures, especially at the end of contraction, or systole. To address it, we propose a novel ap- proach for the cardiac segmentation in the short-axis (SAX) MRI: coupled deep neural networks and deformable models. First, a 2D U-Net is adopted for each magnetic resonance (MR) slice, and a 3D U-Net refines the segmentation results along the temporal dimension. Then, we propose a multi- component deformable model to extract accurate contours for both endo- and epicardium with global and local constraints. Finally, a partial blood classification is explored to estimate the presence of boundary pixels near the trabeculae and solid wall, and to avoid moving the endocardium boundary inward. Quantitative evaluation demonstrates the high accuracy, ro- bustness, and efficiency of our approach for the slices ac- quired at different locations and different cardiac phases.  more » « less
Award ID(s):
1747778
NSF-PAR ID:
10105304
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work presents a novel deep learning architecture called BNU-Net for the purpose of cardiac segmentation based on short-axis MRI images. Its name is derived from the Batch Normalized (BN) U-Net architecture for medical image segmentation. New generations of deep neural networks (NN) are called convolutional NN (CNN). CNNs like U-Net have been widely used for image classification tasks. CNNs are supervised training models which are trained to learn hierarchies of features automatically and robustly perform classification. Our architecture consists of an encoding path for feature extraction and a decoding path that enables precise localization. We compare this approach with a parallel approach named U-Net. Both BNU-Net and U-Net are cardiac segmentation approaches: while BNU-Net employs batch normalization to the results of each convolutional layer and applies an exponential linear unit (ELU) approach that operates as activation function, U-Net does not apply batch normalization and is based on Rectified Linear Units (ReLU). The presented work (i) facilitates various image preprocessing techniques, which includes affine transformations and elastic deformations, and (ii) segments the preprocessed images using the new deep learning architecture. We evaluate our approach on a dataset containing 805 MRI images from 45 patients. The experimental results reveal that our approach accomplishes comparable or better performance than other state-of-the-art approaches in terms of the Dice coefficient and the average perpendicular distance. Index Terms—Magnetic Resonance Imaging; Batch Normalization; Exponential Linear Units 
    more » « less
  2. Cardiac Cine Magnetic Resonance (CMR) Imaging has made a significant paradigm shift in medical imaging technology, thanks to its capability of acquiring high spatial and temporal resolution images of different structures within the heart that can be used for reconstructing patient-specific ventricular computational models. In this work, we describe the development of dynamic patient-specific right ventricle (RV) models associated with normal subjects and abnormal RV patients to be subsequently used to assess RV function based on motion and kinematic analysis. We first constructed static RV models using segmentation masks of cardiac chambers generated from our accurate, memory-efficient deep neural architecture - CondenseUNet - featuring both a learned group structure and a regularized weight-pruner to estimate the motion of the right ventricle. In our study, we use a deep learning-based deformable network that takes 3D input volumes and outputs a motion field which is then used to generate isosurface meshes of the cardiac geometry at all cardiac frames by propagating the end-diastole (ED) isosurface mesh using the reconstructed motion field. The proposed model was trained and tested on the Automated Cardiac Diagnosis Challenge (ACDC) dataset featuring 150 cine cardiac MRI patient datasets. The isosurface meshes generated using the proposed pipeline were compared to those obtained using motion propagation via traditional non-rigid registration based on several performance metrics, including Dice score and mean absolute distance (MAD). 
    more » « less
  3. In the medical sector, three-dimensional (3D) images are commonly used like computed tomography (CT) and magnetic resonance imaging (MRI). The 3D MRI is a non-invasive method of studying the soft-tissue structures in a knee joint for osteoarthritis studies. It can greatly improve the accuracy of segmenting structures such as cartilage, bone marrow lesion, and meniscus by identifying the bone structure first. U-net is a convolutional neural network that was originally designed to segment the biological images with limited training data. The input of the original U-net is a single 2D image and the output is a binary 2D image. In this study, we modified the U-net model to identify the knee bone structures using 3D MRI, which is a sequence of 2D slices. A fully automatic model has been proposed to detect and segment knee bones. The proposed model was trained, tested, and validated using 99 knee MRI cases where each case consists of 160 2D slices for a single knee scan. To evaluate the model’s performance, the similarity, dice coefficient (DICE), and area error metrics were calculated. Separate models were trained using different knee bone components including tibia, femur, patella, as well as a combined model for segmenting all the knee bones. Using the whole MRI sequence (160 slices), the method was able to detect the beginning and ending bone slices first, and then segment the bone structures for all the slices in between. On the testing set, the detection model accomplished 98.79% accuracy and the segmentation model achieved DICE 96.94% and similarity 93.98%. The proposed method outperforms several state-of-the-art methods, i.e., it outperforms U-net by 3.68%, SegNet by 14.45%, and FCN-8 by 2.34%, in terms of DICE score using the same dataset. 
    more » « less
  4. Abstract

    This study presents a particle filter based framework to track cardiac surface from a time sequence of single magnetic resonance imaging (MRI) slices with the future goal of utilizing the presented framework for interventional cardiovascular magnetic resonance procedures, which rely on the accurate and online tracking of the cardiac surface from MRI data. The framework exploits a low-order parametric deformable model of the cardiac surface. A stochastic dynamic system represents the cardiac surface motion. Deformable models are employed to introduce shape prior to control the degree of the deformations. Adaptive filters are used to model complex cardiac motion in the dynamic model of the system. Particle filters are utilized to recursively estimate the current state of the system over time. The proposed method is applied to recover biventricular deformations and validated with a numerical phantom and multiple real cardiac MRI datasets. The algorithm is evaluated with multiple experiments using fixed and varying image slice planes at each time step. For the real cardiac MRI datasets, the average root-mean-square tracking errors of 2.61 mm and 3.42 mm are reported respectively for the fixed and varying image slice planes. This work serves as a proof-of-concept study for modeling and tracking the cardiac surface deformations via a low-order probabilistic model with the future goal of utilizing this method for the targeted interventional cardiac procedures under MR image guidance. For the real cardiac MRI datasets, the presented method was able to track the points-of-interests located on different sections of the cardiac surface within a precision of 3 pixels. The analyses show that the use of deformable cardiac surface tracking algorithm can pave the way for performing precise targeted intracardiac ablation procedures under MRI guidance. The main contributions of this work are twofold. First, it presents a framework for the tracking of whole cardiac surface from a time sequence of single image slices. Second, it employs adaptive filters to incorporate motion information in the tracking of nonrigid cardiac surface motion for temporal coherence.

     
    more » « less
  5. Heart disease is highly prevalent in developed countries, causing 1 in 4 deaths. In this work we propose a method for a fully automated 4D reconstruction of the left ventricle of the heart. This can provide accurate information regarding the heart wall motion and in particular the hemodynamics of the ventricles. Such metrics are crucial for detecting heart function anomalies that can be an indication of heart disease. Our approach is fast, modular and extensible. In our testing, we found that generating the 4D reconstruction from a set of 250 MRI images takes less than a minute. The amount of time saved as a result of our work could greatly benefit physicians and cardiologist as they diagnose and treat patients. Index Terms—Magnetic Resonance Imaging, segmentation, reconstruction, cardiac, machine learning, ventricle 
    more » « less