skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: System-Level Design Methodology for a Distributed Electromechanical Actuator in Bio-Inspired Robots
Biological mechanisms are embraced in mobile robots to interact with their environments. Although existing biologically inspired robots perform well, their performance is limited due to the lack of a flexible spine. A vertebrate spine provides agility, a wide range of motion, balance, and efficiency. This paper proposes a system-level design methodology for a distributed and scalable actuator that mimics a robotic spine in the vertical plane. A modified limb design is introduced that significantly improves the torque capability of the distributed actuator.  more » « less
Award ID(s):
1943791
PAR ID:
10392970
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2021 IEEE International Electric Machines & Drives Conference (IEMDC)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The robotic spine has a lot of potential for snake-like, quadruped, and humanoid robots, as it can improve their mobility, flexibility, and overall function. A common approach to developing an articulated spine uses geared motors to imitate vertebrae. Instead of using geared motors that rotate 360 degree, a bioinspired gearless electromechanical actuator was proposed and developed as an alternative, specifically for humanoid spine applications. The actuator trades off angular flexibility for torque, while the geared motor trades off speed for torque. This article compares the proposed actuator and conventional geared motors regarding torque, acceleration, and copper loss for a vertebra's angular flexibility. When its angular flexibility is lower than 14∘, the proposed actuator achieves higher torque capability without gears than with conventional motors. Lower angular flexibility, which means smaller airgaps, allows the proposed actuator to produce a much stronger torque for the same input power. The actuator's nonlinear electrical and mechanical dynamics models are developed and used for position control of a six-module distributed spine. In addition, two different position-control architectures are developed: an outer loop proportional-integral (PI) position controller with an inner loop PI current controller and an outer loop PI position controller with an inner loop PI torque controller. 
    more » « less
  2. Control of an articulated spine is important for humanoids' dynamic and balanced motion. Although there have been many spinal structures for humanoids, their actuation is still limited due to the usage of geared motors for joints. This paper introduces position control of a distributed electromechanical spine in a vertical plane. The spine dynamics model is approximated as an open chain. Gravitational and spring torques are compensated for the control. Moreover, torque-to-current conversion for the actuator is developed. Experimental results show the implemented control of the electromechanical spine for undulatory motions. 
    more » « less
  3. Abstract Soft robots composed of elastic materials can exhibit nonlinear behaviors, such as variable stiffness and adaptable deformation, that are favorable to cooperation with humans. These characteristics enable soft robots to be used in multiple applications, ranging from minimally invasive surgery and search and rescue in emergency or hazardous environments to marine or space exploration and assistive devices for people with musculoskeletal disorders. Although soft actuators composed of smart materials have been proposed as a control strategy for soft robots, most studies have focused on traditional actuators using hydraulic or pneumatic pressure. Over the years, these have made a lot of progress, but they have not been able to overcome the limitations of the complex configuration of the system and the expansion of the cross-section of the actuator when contracted. This paper merges the actuator design methodology for smart materials with the mechanical analysis of auxetic structures to present an electrically driven soft actuator architecture that achieves reliable actuation displacements. This novel soft actuator, constructed with contractile SMA springs and flexible auxetic metamaterials (FAM), has a spontaneous recovery of the shape after a contraction, a negative Poisson’s ratio, and over 90% of consistency with the performance predictions at the design stage. Our research presents a methodology for the design of a new electrically driven soft actuator, describes the manufacture of SMA springs and FAM, and concludes with the validation of the design by experimental analysis using the 2D planar soft actuator prototype. Finally, our study revealed that the application of the extraordinary characteristics of smart materials and structures together into a single architecture can be a strategy to overcome the limitations of existing soft actuator studies. 
    more » « less
  4. null (Ed.)
    Abstract Soft robots join body and actuation, forming their structure from the same elements that induce motion. Soft actuators are commonly modeled or characterized as primary movers, but their second role as support structure introduces strain–pressure combinations outside of normal actuation. This article examines a more complete set of possible strain–pressure combinations for McKibben actuators, including passive or unpressurized, deformation, pressurized extension and compression of a pressurized actuator beyond the maximum actuation strain. Each region is investigated experimentally, and empirical force–displacement–pressure relationships are identified. Particular focus is placed on ensuring that empirical relationships are consistent at boundaries between an actuator’s strain–pressure regions. The presented methodology is applied to seven McKibben actuator designs, which span variations in wall thickness, enclosure material, and actuator diameter. Empirical results demonstrate a trade-off between maximum contraction strain and force required to passively extend. The results also show that stiffer elastomers require an extreme increase in pressure to contract without a compensatory increase in maximum achieved force. Empirical force–displacement–pressure models were developed for each variant across all the studied strain–pressure regions, enabling future design variation studies for soft robots that use actuators as structures. 
    more » « less
  5. Recent work in fluid-driven soft robots has demonstrated the potential to achieve high power-to-weight ratios, low fabrication costs, and improved safety, making them well suited for interactive tasks. However, the low speed of pneumatic actuation prevents use of these robots in more dynamic tasks. This paper aims to design, characterize, and model a bistable elastomeric actuator for swift tasks (BEAST). This actuator enables both fast actuation and mechanical compliance, and is designed by integrating silicone and polyethylene terephthalate (PET) in a bendy straw structure. The BEAST contains three states - compressed, natural, and stretched states. Two operation modes - compressed and stretched modes, are defined to model the continuous elongation dynamics before and after the quickly switching around the natural state. A set of design rules and a novel fabrication method are presented to develop the BEAST. The actuator characterization shows that the maximum extension ratio, snapping speed, and output force of the BEAST to be 0.58, 1.5m/s, and 48N, respectively. A hybrid linear parameter varying (HLPV) model is developed to describe the pressure-dependent dynamics of the actuator. The actuators are evaluated in an object sorting task where both fast and gentle behaviors are demonstrated. 
    more » « less