skip to main content


This content will become publicly available on September 11, 2024

Title: Soft Actuators From Flexible Auxetic Metamaterials and Shape Memory Alloys Springs
Abstract

Soft robots composed of elastic materials can exhibit nonlinear behaviors, such as variable stiffness and adaptable deformation, that are favorable to cooperation with humans. These characteristics enable soft robots to be used in multiple applications, ranging from minimally invasive surgery and search and rescue in emergency or hazardous environments to marine or space exploration and assistive devices for people with musculoskeletal disorders. Although soft actuators composed of smart materials have been proposed as a control strategy for soft robots, most studies have focused on traditional actuators using hydraulic or pneumatic pressure. Over the years, these have made a lot of progress, but they have not been able to overcome the limitations of the complex configuration of the system and the expansion of the cross-section of the actuator when contracted. This paper merges the actuator design methodology for smart materials with the mechanical analysis of auxetic structures to present an electrically driven soft actuator architecture that achieves reliable actuation displacements. This novel soft actuator, constructed with contractile SMA springs and flexible auxetic metamaterials (FAM), has a spontaneous recovery of the shape after a contraction, a negative Poisson’s ratio, and over 90% of consistency with the performance predictions at the design stage. Our research presents a methodology for the design of a new electrically driven soft actuator, describes the manufacture of SMA springs and FAM, and concludes with the validation of the design by experimental analysis using the 2D planar soft actuator prototype. Finally, our study revealed that the application of the extraordinary characteristics of smart materials and structures together into a single architecture can be a strategy to overcome the limitations of existing soft actuator studies.

 
more » « less
Award ID(s):
1943715
NSF-PAR ID:
10477221
Author(s) / Creator(s):
;
Publisher / Repository:
American Society of Mechanical Engineers
Date Published:
Format(s):
Medium: X
Location:
Austin, Texas, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. In the world of soft-robotic medical devices, there is a growing need for low profile, non-rigid, and lower power actuators for soft exoskeletons and dynamic compression garments. Advanced compression garments with integrated shape memory materials have been developed recently to alleviate the functional and usability limitations associated with traditional compression garments. These advanced garments use contractile shape memory alloy (SMA) coil actuators to produce dynamic compression on the body through selective heating of the SMA material. While these garments can create spatially- and temporally-controllable compression, typical SMA materials (e.g., 70°C Flexinol) consume considerable power and require considerable thermal insulation to protect the wearer during the heating phase of the SMA actuation. Alternative SMA materials (e.g., NiTi #8 by Fort Wayne Metals, Inc.) transform below room temperature and do so using no applied electrical power and generate no waste heat. However, these materials are challenging to dynamically control and require active refrigeration to reset to material. In theory, low-temperature SMA actuators made from materials like NiTi #8 may maintain additional dynamic actuation capacity once equilibrated to room temperature (i.e., the material may not fully transform), as the SMA phase transformation temperature window expands when the material experiences applied stress. This paper investigates this possibility: we manufactured and tested low-temperature NiTi coil actuators to determine the magnitude of the additional force that can be generated via Joule heating once the material has equilibrated to room temperature. SMA spring actuators made from NiTi #8 consumed 84% less power and stabilized at significantly lower temperatures (26.0°C vs. 41.2°C) than SMA springs made from 70°C Flexinol, when actuated at identically fixed displacements (100% nominal strain) and when driven to produce equal forces (∼3.35N). This demonstration of low-power, minimal-heat exposure SMA actuation holds promise for many future wearable actuation applications, including dynamic compression garments.

     
    more » « less
  2.  
    more » « less
  3. This paper will investigate the effects of pennate angle on fluidic artificial muscle (FAM) bundles for a robot arm motion. Rising interest in soft fluidic actuators exists due to their prospective inherent compliance and safe human-robot interaction. The high force-to-weight ratio, innate flexibility, inexpensive construction, and muscle-like force-contraction behavior of McKibben FAMs make them an attractive type of soft fluidic actuator. Multi-unit architectures found in biological muscles tissues and geometric fiber arrangements have inspired the development of hierarchical actuators to enhance the total actuator performance and increase actuator functionality. Parallel, asymmetric unipennate, and symmetric bipennate are three muscle fiber arrangement types found in human skeletal muscle tissues. Unique characteristics of the pennate muscle tissue, with muscle fibers arranged obliquely from the line of muscle motion, enable passive regulation of effective transmission between the fibers and muscle. Prior studies developed an analytical model based on idealized assumptions to leverage this pennate topology in optimal fiber parameter design for FAM bundles under spatial bounds. The findings showed FAMs in the bipennate topology can be designed to amplify the muscle output force, contraction, and stiffness as compared to that of a parallel topology under equivalent spatial and operating constraints. This work seeks to extend upon previous studies by investigating the effects of pennate angle on actuation and system hydraulic efficiency for a robot arm with a more realistic FAM model. The results will progress toward tailoring actuator topology designs for custom compliant actuation applications. 
    more » « less
  4. Textiles hold great promise as a soft yet durable material for building comfortable robotic wearables and assistive devices at low cost. Nevertheless, the development of smart wearables composed entirely of textiles has been hindered by the lack of a viable sheet-based logic architecture that can be implemented using conventional fabric materials and textile manufacturing processes. Here, we develop a fully textile platform for embedding pneumatic digital logic in wearable devices. Our logic-enabled textiles support combinational and sequential logic functions, onboard memory storage, user interaction, and direct interfacing with pneumatic actuators. In addition, they are designed to be lightweight, easily integrable into regular clothing, made using scalable fabrication techniques, and durable enough to withstand everyday use. We demonstrate a textile computer capable of input-driven digital logic for controlling untethered wearable robots that assist users with functional limitations. Our logic platform will facilitate the emergence of future wearables powered by embedded fluidic logic that fully leverage the innate advantages of their textile construction. 
    more » « less
  5. Abstract

    Matching the rich multimodality of natural organisms, i.e., the ability to transition between crawling and swimming, walking and jumping, etc., represents a grand challenge in the fields of soft and bio‐inspired robotics. Here, a multimodal soft robot locomotion using highly compact and dynamic bistable soft actuators is achieved. These actuators are composed of a prestretched membrane sandwiched between two 3D printed frames with embedded shape memory alloy (SMA) coils. The actuator can swiftly transform between two oppositely curved states and generate a force of 0.3 N through a snap‐through instability that is triggered after 0.2 s of electrical activation with an input power of 21.1 ± 0.32W(i.e., electrical energy input of 4.22 ± 0.06J. The consistency and robustness of the snap‐through actuator response is experimentally validated through cyclical testing (580 cycles). The compact and fast‐responding properties of the soft bistable actuator allow it to be used as an artificial muscle for shape‐reconfigurable soft robots capable of multiple modes of SMA‐powered locomotion. This is demonstrated by creating three soft robots, including a reconfigurable amphibious robot that can walk on land and swim in water, a jumping robot (multimodal crawler) that can crawl and jump, and a caterpillar‐inspired rolling robot that can crawl and roll.

     
    more » « less