skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CyberGIS-compute for enabling computationally intensive geospatial research
Geospatial research and education have become increasingly dependent on cyberGIS to tackle computation and data challenges. However, the use of advanced cyberinfrastructure resources for geospatial research and education is extremely challenging due to both high learning curve for users and high software development and integration costs for developers, due to limited availability of middleware tools available to make such resources easily accessible. This tutorial describes CyberGIS-Compute as a middleware framework that addresses these challenges and provides access to high-performance resources through simple easy to use interfaces. The CyberGIS-Compute framework provides an easy to use application interface and a Python SDK to provide access to CyberGIS capabilities, allowing geospatial applications to easily scale and employ advanced cyberinfrastructure resources. In this tutorial, we will first start with the basics of CyberGISJupyter and CyberGIS-Compute, then introduce the Python SDK for CyberGIS-Compute with a simple Hello World example. Then, we will take multiple real-world geospatial applications use-cases like spatial accessibility and wildfire evacuation simulation using agent based modeling. We will also provide pointers on how to contribute applications to the CyberGIS-Compute framework.  more » « less
Award ID(s):
1664061 1664018 1664119
PAR ID:
10393010
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 3rd ACM SIGSPATIAL International Workshop on APIs and Libraries for Geospatial Data Science (SpatialAPI’21)
Page Range / eLocation ID:
1 to 2
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. CyberGIS—geographic information science and systems (GIS) based on advanced cyberinfrastructure—is becoming increasingly important to tackling a variety of socio-environmental problems like climate change, disaster management, and water security. While recent advances in high-performance computing (HPC) have the potential to help address these problems, the technical knowledge required to use HPC has posed challenges to many domain experts. In this paper, we present CyberGIS-Compute: a geospatial middleware tool designed to democratize HPC access for solving diverse socio-environmental problems. CyberGIS-Compute does this by providing a simple user interface in Jupyter, streamlining the process of integrating domain-specific models with HPC, and establishing a suite of APIs friendly to domain experts. 
    more » « less
  2. Summary The interdisciplinary field of cyberGIS (geographic information science and systems (GIS) based on advanced cyberinfrastructure) has a major focus on data‐ and computation‐intensive geospatial analytics. The rapidly growing needs across many application and science domains for such analytics based on disparate geospatial big data poses significant challenges to conventional GIS approaches. This paper describes CyberGIS‐Jupyter, an innovative cyberGIS framework for achieving data‐intensive, reproducible, and scalable geospatial analytics using Jupyter Notebook based on ROGER, the first cyberGIS supercomputer. The framework adapts the Notebook with built‐in cyberGIS capabilities to accelerate gateway application development and sharing while associated data, analytics, and workflow runtime environments are encapsulated into application packages that can be elastically reproduced through cloud‐computing approaches. As a desirable outcome, data‐intensive and scalable geospatial analytics can be efficiently developed and improved and seamlessly reproduced among multidisciplinary users in a novel cyberGIS science gateway environment. 
    more » « less
  3. Abstract Maintaining educational resources and training materials as timely, current, and aligned with the needs of students, practitioners, and other users of geospatial technologies is a persistent challenge. This is particularly problematic within CyberGIS, a subfield of Geographic Information Science and Technology (GIS&T) that involves high‐performance computing and advanced cyberinfrastructure to address computation‐ and data‐intensive problems. In this study, we analyzed and compared content from two open educational resources: (1) a popular online web resource that regularly covers CyberGIS‐related topics (GIS Stack Exchange) and (2) existing and proposed content in the GIS&T Body of Knowledge. While current curricula may build a student's conceptual understanding of CyberGIS, there is a noticeable lack of resources for practical implementation of CyberGIS tools. The results highlight discrepancies between the attention and frequency of CyberGIS topics according to a popular online help resource and the CyberGIS academic community. 
    more » « less
  4. Lu, Baochuan; Smallwood, Pam (Ed.)
    As research and education advance, so does their need for advanced computational resources. While some universities are fortunate to be able to provide these resources in abundance, many do not have free availability to such cyberinfrastructure for their research, much less for their instruction. Through Advanced Cyberinfrastructure Coordination Ecosystem: Services \& Support (ACCESS), advanced computing resources such as Jetstream2 are shared with educators for free. This sharing of resources provides access to educators who normally would not have access to such platforms. 
    more » « less
  5. null (Ed.)
    Use of geospatial technology in higher education facilitates student engagement, promotes deeper understanding of material, and supports inquiry-based learning. However, technology must be applied strategically to generate optimal results. While use of web-based interactive modules and short video are constructive in curriculum, it is beneficial to combine this with exposure to hands-on, experimental, field-based technologies. Experiential learning with technology in the physical environment allows students to understand both the challenges and achievements of scientific investigation. This creates a more comprehensive understanding of science as an iterative process of experimentation and investigation and enrichens course material. This paper explores the uniquely advantageous opportunity Geography educators have to combine classroom-based technology with field-based educational experiences. Classroom use of Geographic Information Systems (GIS) and Remotely Sensed data is increasingly accessible with abundant free educational resources. In addition, field-based use of technology can promote location awareness and spatial critical thinking with the use of GPS-based activities. GPS-based educational units also highlight the growing field of citizen science and can be designed as service-based learning opportunities. Use of highly affordable micro unmanned aerial vehicles (UAV) demonstrates data collection procedures. In addition, exposure to Surveying techniques and the field of Geomatics highlights real-world applications of geographic technology. We discuss the use of geospatial technologies in introductory and advanced higher education courses and examine how technology can encourage access to scientific inquiry throughout the student population. 
    more » « less