skip to main content

Search for: All records

Award ID contains: 1664119

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary

    The interdisciplinary field of cyberGIS (geographic information science and systems (GIS) based on advanced cyberinfrastructure) has a major focus on data‐ and computation‐intensive geospatial analytics. The rapidly growing needs across many application and science domains for such analytics based on disparate geospatial big data poses significant challenges to conventional GIS approaches. This paper describes CyberGIS‐Jupyter, an innovative cyberGIS framework for achieving data‐intensive, reproducible, and scalable geospatial analytics using Jupyter Notebook based on ROGER, the first cyberGIS supercomputer. The framework adapts the Notebook with built‐in cyberGIS capabilities to accelerate gateway application development and sharing while associated data, analytics, and workflow runtime environments are encapsulated into application packages that can be elastically reproduced through cloud‐computing approaches. As a desirable outcome, data‐intensive and scalable geospatial analytics can be efficiently developed and improved and seamlessly reproduced among multidisciplinary users in a novel cyberGIS science gateway environment.

    more » « less
  2. Geospatial research and education have become increasingly dependent on cyberGIS to tackle computation and data challenges. However, the use of advanced cyberinfrastructure resources for geospatial research and education is extremely challenging due to both high learning curve for users and high software development and integration costs for developers, due to limited availability of middleware tools available to make such resources easily accessible. This tutorial describes CyberGIS-Compute as a middleware framework that addresses these challenges and provides access to high-performance resources through simple easy to use interfaces. The CyberGIS-Compute framework provides an easy to use application interface and a Python SDK to provide access to CyberGIS capabilities, allowing geospatial applications to easily scale and employ advanced cyberinfrastructure resources. In this tutorial, we will first start with the basics of CyberGISJupyter and CyberGIS-Compute, then introduce the Python SDK for CyberGIS-Compute with a simple Hello World example. Then, we will take multiple real-world geospatial applications use-cases like spatial accessibility and wildfire evacuation simulation using agent based modeling. We will also provide pointers on how to contribute applications to the CyberGIS-Compute framework. 
    more » « less
  3. null (Ed.)