skip to main content

Title: Analytical Study of Shear-Thinning Fluid Flow in Direct Ink Writing Process

As a facile and versatile additive manufacturing technology, direct ink writing (DIW) has attracted considerable interest in academia and industry to fabricate three-dimensional structures with unique properties and functionalities. However, so far, the physical phenomena during the DIW process are not revealed in detail, leaving a research gap between the physical experiments and the underlying theories. Here, we presented a comprehensive simulation study of non-Newtonian ink flow during the DIW process. We used the computational fluid dynamics (CFD) method and revealed the shear-thinning behavior during the extrusion process. Different nozzle geometry models were adopted in the simulation. The advantages and drawbacks of each syringe-nozzle geometry were analyzed. In addition, the ink shear stress and velocity fields were investigated and compared in the case studies. Based on these investigations and analysis, we proposed an improved syringe-nozzle geometry towards high-resolution DIW. Consequently, the high-resolution and high shape fidelity DIW could enhance the DIW product performance. The results developed in this work offer valuable guidelines and could accelerate further advancement of DIW.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ASME 2022 17th International Manufacturing Science and Engineering Conference
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Direct ink writing (DIW) process is a facile additive manufacturing technology to fabricate three-dimensional (3D) objects with various materials. Its versatility has attracted considerable interest in academia and industry in recent years. As such, upsurging endeavors are invested in advancing the ink flow behaviors in order to optimize the process resolution and the printing quality. However, so far, the physical phenomena during the DIW process are not revealed in detail, leaving a research gap between the physical experiments and its underlying theories. Here, we present a comprehensive analytical study of non-Newtonian ink flow behavior during the DIW process. Different syringe-nozzle geometries are modeled for the comparative case studies. By using the computational fluid dynamics (CFD) simulation method, we reveal the shear-thinning property during the ink extrusion process. Besides, we study the viscosity, shear stress, and velocity fields, and analyze the advantages and drawbacks of each syringe-nozzle model. On the basis of these investigations and analyses, we propose an improved syringe-nozzle geometry for stable extrusion and high printing quality. A set of DIW printing experiments and rheological characterizations are carried out to verify the simulation studies. The results developed in this work offer an in-depth understanding of the ink flow behavior in the DIW process, providing valuable guidelines for optimizing the physical DIW configuration toward high-resolution printing and, consequently, improving the performance of DIW-printed objects.

    more » « less
  2. Abstract

    Three‐dimensional (3D) printing methods, such as vat photopolymerization (VPP) and direct‐ink‐writing (DIW) processes, are known for their high‐resolution and multimaterial capabilities, respectively. Here a novel hybrid 3D printing technique that combines the strengths of VPP and DIW processes to achieve multimaterial and high‐resolution printing of functional structures and devices, is presented. The method involves dispensing liquid‐like materials via syringes into a photocurable matrix material and subsequently using a Galvano mirror‐controlled laser beam to selectively photocure the dispensed material trace or the matrix material surrounding the trace. The laser beam scanning and syringe dispensing are synchronized with a set delay to control liquid diffusion and in situ fixture. The versatility of the method is demonstrated by fabricating intricate 3D ant and wheel prototypes using various materials available for VPP and DIW technologies. The proposed photocuring‐while‐dispensing strategy offers advantages over conventional multimaterial 3D printing methods, such as integrating materials regardless of photocurability and viscosity, and fabricating heterogeneous structures with complex geometries and high resolution. With its principle demonstrated, this multimaterial 3D printing process will open up a wide range of potential applications with diverse functionalities and materials.

    more » « less
  3. Abstract

    Direct ink writing (DIW) has demonstrated great potential as a multimaterial multifunctional fabrication method in areas as diverse as electronics, structural materials, tissue engineering, and soft robotics. During DIW, viscoelastic inks are extruded out of a 3D printer's nozzle as printed fibers, which are deposited into patterns when the nozzle moves. Hence, the resolution of printed fibers is commonly limited by the nozzle's diameter, and the printed pattern is limited by the motion paths. These limits have severely hampered innovations and applications of DIW 3D printing. Here, a new strategy to exceed the limits of DIW 3D printing by harnessing deformation, instability, and fracture of viscoelastic inks is reported. It is shown that a single nozzle can print fibers with resolution much finer than the nozzle diameter by stretching the extruded ink, and print various thickened or curved patterns with straight nozzle motions by accumulating the ink. A quantitative phase diagram is constructed to rationally select parameters for the new strategy. Further, applications including structures with tunable stiffening, 3D structures with gradient and programmable swelling properties, all printed with a single nozzle are demonstrated. The current work demonstrates that the mechanics of inks plays a critical role in developing 3D printing technology.

    more » « less
  4. Abstract

    Direct ink writing (DIW) is an extrusion-based additive manufacturing technology. It has gained wide attentions in both industry and research because of its simple design and versatile platform. In electric-field-assisted Direct Ink Writing (eDIW) processes, an external electric field is added between the nozzle and the printing substrate to manipulate the ink-substrate wetting dynamics and therefore optimize the ink printability. eDIW was found effective in printing liquids that are typically difficult to print in the conventional DIW processes. In this paper, an eDIW process modeling system based on machine learning (ML) algorithms is developed. The system is found effective in predicting eDIW printing geometry under varied process parameter settings. Image processing approaches to collect experiment data are developed. Accuracies of different machine learning algorithms for predicting printing results and trace width are compared and discussed. The capabilities, applications and limitations of the presented machine learning-based modeling approach are presented.

    more » « less
  5. Abstract

    As bioprinting advances into clinical relevance with patient-specific tissue and organ constructs, it must be capable of multi-material fabrication at high resolutions to accurately mimick the complex tissue structures found in the body. One of the most fundamental structures to regenerative medicine is microvasculature. Its continuous hierarchical branching vessel networks bridge surgically manipulatable arteries (∼1–6 mm) to capillary beds (∼10µm). Microvascular perfusion must be established quickly for autologous, allogeneic, or tissue engineered grafts to survive implantation and heal in place. However, traditional syringe-based bioprinting techniques have struggled to produce perfusable constructs with hierarchical branching at the resolution of the arterioles (∼100-10µm) found in microvascular tissues. This study introduces the novel CEVIC bioprinting device (i.e.ContinuouslyExtrudedVariableInternalChanneling), a multi-material technology that breaks the current extrusion-based bioprinting paradigm of pushing cell-laden hydrogels through a nozzle as filaments, instead, in the version explored here, extruding thin, wide cell-laden hydrogel sheets. The CEVIC device adapts the chaotic printing approach to control the width and number of microchannels within the construct as it is extruded (i.e. on-the-fly). Utilizing novel flow valve designs, this strategy can produce continuous gradients varying geometry and materials across the construct and hierarchical branching channels with average widths ranging from 621.5 ± 42.92%µm to 11.67 ± 14.99%µm, respectively, encompassing the resolution range of microvascular vessels. These constructs can also include fugitive/sacrificial ink that vacates to leave demonstrably perfusable channels. In a proof-of-concept experiment, a co-culture of two microvascular cell types, endothelial cells and pericytes, sustained over 90% viability throughout 1 week in microchannels within CEVIC-produced gelatin methacryloyl-sodium alginate hydrogel constructs. These results justify further exploration of generating CEVIC-bioprinted microvasculature, such as pre-culturing and implantation studies.

    more » « less