skip to main content

Title: Machine Learning-Based Modeling of Electric-Field-Assisted Direct Ink Writing (EDIW) Process

Direct ink writing (DIW) is an extrusion-based additive manufacturing technology. It has gained wide attentions in both industry and research because of its simple design and versatile platform. In electric-field-assisted Direct Ink Writing (eDIW) processes, an external electric field is added between the nozzle and the printing substrate to manipulate the ink-substrate wetting dynamics and therefore optimize the ink printability. eDIW was found effective in printing liquids that are typically difficult to print in the conventional DIW processes. In this paper, an eDIW process modeling system based on machine learning (ML) algorithms is developed. The system is found effective in predicting eDIW printing geometry under varied process parameter settings. Image processing approaches to collect experiment data are developed. Accuracies of different machine learning algorithms for predicting printing results and trace width are compared and discussed. The capabilities, applications and limitations of the presented machine learning-based modeling approach are presented.

more » « less
Award ID(s):
2224749 1825626
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Society of Mechanical Engineers
Date Published:
Medium: X
New Brunswick, New Jersey, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. The rapid development of additive manufacturing, also known as three-dimensional (3D) printing, is driving innovations in both industry and academia. Direct ink writing (DIW), an extrusion-based 3D printing technology, can build 3D structures through the deposition of custom-made inks and produce devices with complex architectures, excellent mechanical properties, and enhanced functionalities. A paste-like ink is the key to successful printing. However, as new ink compositions have emerged, the rheological requirements of inks have not been well connected to printability, or the ability of a printed object to maintain its shape and support the weight of subsequent layers. In this review, we provide an overview of the rheological properties of successful DIW inks and propose a classification system based on ink composition. Factors influencing the rheology of different types of ink are discussed, and we propose a framework for describing ink printability using measures of rheology and print resolution. Furthermore, evolving techniques, including computational studies, high-throughput rheological measurements, machine learning, and materiomics, are discussed to illustrate the future directions of feedstock development for DIW. The goals of this review are to assess our current understanding of the relationship between rheological properties and printability, to point out specific challenges and opportunities for development, to provide guidelines to those interested in multi-material DIW, and to pave the way for more efficient, intelligent approaches for DIW ink development.

    more » « less
  2. Abstract

    Direct ink writing (DIW) process is a facile additive manufacturing technology to fabricate three-dimensional (3D) objects with various materials. Its versatility has attracted considerable interest in academia and industry in recent years. As such, upsurging endeavors are invested in advancing the ink flow behaviors in order to optimize the process resolution and the printing quality. However, so far, the physical phenomena during the DIW process are not revealed in detail, leaving a research gap between the physical experiments and its underlying theories. Here, we present a comprehensive analytical study of non-Newtonian ink flow behavior during the DIW process. Different syringe-nozzle geometries are modeled for the comparative case studies. By using the computational fluid dynamics (CFD) simulation method, we reveal the shear-thinning property during the ink extrusion process. Besides, we study the viscosity, shear stress, and velocity fields, and analyze the advantages and drawbacks of each syringe-nozzle model. On the basis of these investigations and analyses, we propose an improved syringe-nozzle geometry for stable extrusion and high printing quality. A set of DIW printing experiments and rheological characterizations are carried out to verify the simulation studies. The results developed in this work offer an in-depth understanding of the ink flow behavior in the DIW process, providing valuable guidelines for optimizing the physical DIW configuration toward high-resolution printing and, consequently, improving the performance of DIW-printed objects.

    more » « less
  3. Abstract

    As a facile and versatile additive manufacturing technology, direct ink writing (DIW) has attracted considerable interest in academia and industry to fabricate three-dimensional structures with unique properties and functionalities. However, so far, the physical phenomena during the DIW process are not revealed in detail, leaving a research gap between the physical experiments and the underlying theories. Here, we presented a comprehensive simulation study of non-Newtonian ink flow during the DIW process. We used the computational fluid dynamics (CFD) method and revealed the shear-thinning behavior during the extrusion process. Different nozzle geometry models were adopted in the simulation. The advantages and drawbacks of each syringe-nozzle geometry were analyzed. In addition, the ink shear stress and velocity fields were investigated and compared in the case studies. Based on these investigations and analysis, we proposed an improved syringe-nozzle geometry towards high-resolution DIW. Consequently, the high-resolution and high shape fidelity DIW could enhance the DIW product performance. The results developed in this work offer valuable guidelines and could accelerate further advancement of DIW.

    more » « less
  4. Abstract

    Three‐dimensional (3D) printing methods, such as vat photopolymerization (VPP) and direct‐ink‐writing (DIW) processes, are known for their high‐resolution and multimaterial capabilities, respectively. Here a novel hybrid 3D printing technique that combines the strengths of VPP and DIW processes to achieve multimaterial and high‐resolution printing of functional structures and devices, is presented. The method involves dispensing liquid‐like materials via syringes into a photocurable matrix material and subsequently using a Galvano mirror‐controlled laser beam to selectively photocure the dispensed material trace or the matrix material surrounding the trace. The laser beam scanning and syringe dispensing are synchronized with a set delay to control liquid diffusion and in situ fixture. The versatility of the method is demonstrated by fabricating intricate 3D ant and wheel prototypes using various materials available for VPP and DIW technologies. The proposed photocuring‐while‐dispensing strategy offers advantages over conventional multimaterial 3D printing methods, such as integrating materials regardless of photocurability and viscosity, and fabricating heterogeneous structures with complex geometries and high resolution. With its principle demonstrated, this multimaterial 3D printing process will open up a wide range of potential applications with diverse functionalities and materials.

    more » « less
  5. Compared with current powder-based 3D metal printing, thixotropic metal 3D printing has great potentials and advantages in equipment cost, product quality, and process efficiency. In this paper, detailed problem statement, technique challenge, and development method regarding thixotropic metal 3D printing are discussed. A shear mixing and extruding prototype machine for thixotropic alloy fabrication was designed. We developed a direct thixotropic metal 3D printing machine and conducted a modeling and simulation process for the system. The printability of this direct metal 3D printing machine was studied. At the end, conclusions and future directions are also presented. 
    more » « less