skip to main content


Title: Fast thermal analysis for chiplet design based on graph convolution networks
2.5D chiplet-based technology promises an efficient integration technique for advanced designs with more functionality and higher performance. Temperature and related thermal optimization, heat removal are of critical importance for temperature-aware physical synthesis for chiplets. This paper presents a novel graph convolutional networks (GCN) architecture to estimate the thermal map of the 2.5D chiplet-based systems with the thermal resistance networks built by the compact thermal model (CTM). First, we take the total power of all chiplets as an input feature, which is a global feature. This additional global information can overcome the limitation that the GCN can only extract local information via neighborhood aggregation. Second, inspired by convolutional neural networks (CNN), we add skip connection into the GCN to pass the global feature directly across the hidden layers with the concatenation operation. Third, to consider the edge embedding feature, we propose an edge-based attention mechanism based on the graph attention networks (GAT). Last, with the multiple aggregators and scalers of principle neighborhood aggregation (PNA) networks, we can further improve the modeling capacity of the novel GCN. The experimental results show that the proposed GCN model can achieve an average RMSE of 0.31 K and deliver a 2.6$\times$ speedup over the fast steady-state solver of open-source {\it HotSpot} based on SuperLU. More importantly, the GCN model demonstrates more useful generalization or transferable capability. Our results show that the trained GCN can be directly applied to predict thermal maps of six unseen datasets with acceptable mean RMSEs of less than 0.67 K without retraining via inductive learning.  more » « less
Award ID(s):
2113928
NSF-PAR ID:
10393029
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proc. Asia South Pacific Design Automation Conference (ASP-DAC’22)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Noise and inconsistency commonly exist in real-world information networks, due to the inherent error-prone nature of human or user privacy concerns. To date, tremendous efforts have been made to advance feature learning from networks, including the most recent graph convolutional networks (GCNs) or attention GCN, by integrating node content and topology structures. However, all existing methods consider networks as error-free sources and treat feature content in each node as independent and equally important to model node relations. Noisy node content, combined with sparse features, provides essential challenges for existing methods to be used in real-world noisy networks. In this article, we propose feature-based attention GCN (FA-GCN), a feature-attention graph convolution learning framework, to handle networks with noisy and sparse node content. To tackle noise and sparse content in each node, FA-GCN first employs a long short-term memory (LSTM) network to learn dense representation for each node feature. To model interactions between neighboring nodes, a feature-attention mechanism is introduced to allow neighboring nodes to learn and vary feature importance, with respect to their connections. By using a spectral-based graph convolution aggregation process, each node is allowed to concentrate more on the most determining neighborhood features aligned with the corresponding learning task. Experiments and validations, w.r.t. different noise levels, demonstrate that FA-GCN achieves better performance than the state-of-the-art methods in both noise-free and noisy network environments. 
    more » « less
  2. Graph convolutional neural network architectures combine feature extraction and convolutional layers for hyperspectral image classification. An adaptive neighborhood aggregation method based on statistical variance integrating the spatial information along with the spectral signature of the pixels is proposed for improving graph convolutional network classification of hyperspectral images. The spatial-spectral information is integrated into the adjacency matrix and processed by a single-layer graph convolutional network. The algorithm employs an adaptive neighborhood selection criteria conditioned by the class it belongs to. Compared to fixed window-based feature extraction, this method proves effective in capturing the spectral and spatial features with variable pixel neighborhood sizes. The experimental results from the Indian Pines, Houston University, and Botswana Hyperion hyperspectral image datasets show that the proposed AN-GCN can significantly improve classification accuracy. For example, the overall accuracy for Houston University data increases from 81.71% (MiniGCN) to 97.88% (AN-GCN). Furthermore, the AN-GCN can classify hyperspectral images of rice seeds exposed to high day and night temperatures, proving its efficacy in discriminating the seeds under increased ambient temperature treatments.

     
    more » « less
  3. Label Propagation Algorithm (LPA) and Graph Convolutional Neural Networks (GCN) are both message passing algorithms on graphs. Both solve the task of node classification, but LPA propagates node label information across the edges of the graph, while GCN propagates and transforms node feature information. However, while conceptually similar, theoretical relationship between LPA and GCN has not yet been systematically investigated. Moreover, it is unclear how LPA and GCN can be combined under a unified framework to improve the performance. Here we study the relationship between LPA and GCN in terms of feature/label influence , in which we characterize how much the initial feature/label of one node influences the final feature/label of another node in GCN/LPA. Based on our theoretical analysis, we propose an end-to-end model that combines GCN and LPA. In our unified model, edge weights are learnable, and the LPA serves as regularization to assist the GCN in learning proper edge weights that lead to improved performance. Our model can also be seen as learning the weights of edges based on node labels, which is more direct and efficient than existing feature-based attention models or topology-based diffusion models. In a number of experiments for semi-supervised node classification and knowledge-graph-aware recommendation, our model shows superiority over state-of-the-art baselines. 
    more » « less
  4. null (Ed.)
    Heterogeneous systems are commonly used today to sustain the historic benefits we have achieved through technology scaling. 2.5D integration technology provides a cost-effective solution for designing heterogeneous systems. The traditional physical design of a 2.5D heterogeneous system closely packs the chiplets to minimize wirelength, but this leads to a thermally-inefficient design. We propose TAP-2.5D: the first open-source network routing and thermally-aware chiplet placement methodology for heterogeneous 2.5D systems. TAP-2.5D strategically inserts spacing between chiplets to jointly minimize the temperature and total wirelength, and in turn, increases the thermal design power envelope of the overall system. We present three case studies demonstrating the usage and efficacy of TAP-2.5D. 
    more » « less
  5. As the size of real-world graphs continues to grow at an exponential rate, performing the Graph Convolutional Network (GCN) inference efficiently is becoming increasingly challenging. Prior works that employ a unified computing engine with a predefined computation order lack the necessary flexibility and scalability to handle diverse input graph datasets. In this paper, we introduce OPT-GCN, a chiplet-based accelerator design that performs GCN inference efficiently while providing flexibility and scalability through an architecture-algorithm co-design. On the architecture side, the proposed design integrates a unified computing engine in each chiplet and an active interposer, both of which are adaptable to efficiently perform the GCN inference and facilitate data communication. On the algorithm side, we propose dynamic scheduling and mapping algorithms to optimize memory access and on-chip computations for diverse GCN applications. Experimental results show that the proposed design provides a memory access reduction by a factor of 11.3×, 3.4×, 1.4× energy savings of 15.2×, 3.7×, 1.6× on average compared to HyGCN, AWB-GCN, and GCNAX, respectively. 
    more » « less