skip to main content


Title: Coordination Chemistry of Uranyl Ions with Surface-Immobilized Peptides: An XPS Study
The coordination chemistry of uranyl ions with surface immobilized peptides was studied using X-ray photoemission spectroscopy (XPS). All the peptides in the study were modified using a six-carbon alkanethiol as a linker on a gold substrate with methylene blue as the redox label. The X-ray photoemission spectra reveal that each modified peptide interacts differently with the uranyl ion. For all the modified peptides, the XPS spectra were taken in both the absence and presence of the uranium, and their comparison reveals that the interaction depends on the chemical group present in the peptides. The XPS results show that, among all the modified peptides in the current study, the (arginine)9 (R9) modified peptide showed the largest response to uranium. In the order of response to uranium, the second largest response was shown by the modified (arginine)6 (R6) peptide followed by the modified (lysine)6 (K6) peptide. Other modified peptides, (alanine)6 (A6), (glutamic acid)6 (E6) and (serine)6 (S6), did not show any response to uranium.  more » « less
Award ID(s):
2044049 2003057
NSF-PAR ID:
10393109
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Molecules
Volume:
27
Issue:
24
ISSN:
1420-3049
Page Range / eLocation ID:
8960
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We analyzed the spike protein S1/S2 cleavage of selected strains of a prototype coronavirus, mouse hepatitis virus (MHV) by the cellular protease furin, in order to understand the structural requirements underlying the sequence selectivity of the scissile segment. The probability of cleavage of selected MHV strains was first evaluated from furin cleavage scores predicted by the ProP computer software, and then cleavage was measured experimentally with a fluorogenic peptide cleavage assay consisting of S1/S2 peptide mimics and purified furin. We found that in vitro cleavability varied across MHV strains in line with predicted results—but with the notable exception of MHV-A59, which was not cleaved despite a high score predicted for its sequence. Using the known X-Ray structure of furin in complex with a substrate-like inhibitor as an initial structural reference, we carried out molecular dynamics (MD) simulations to learn the modes of binding of the peptides in the furin active site, and the suitability of the complex for initiation of the enzymatic cleavage. We identified the 3D structural requirements of the furin active site configuration that enable bound peptides to undergo cleavage, and the way in which the various strains tested experimentally are fulfilling these requirements. We find that despite some flexibility in the organization of the peptide bound to the active site of the enzyme, the presence of a histidine at P2 of MHV-A59 fails to properly orient the sidechain of His194 of the furin catalytic triad and therefore produces a distortion that renders the peptide/complex structural configuration in the active site incompatible with requirements for cleavage initiation. The Ser/Thr in P1 of MHV-2 and MHV-S has a similar effect of distorting the conformation of the furin active site residues produced by the elimination of the canonical salt-bridge formed by arginine in P1 position. This work informs a study of coronavirus infection and pathogenesis with respect to the function of the viral spike protein, and suggests an important process of viral adaptation and evolution within the spike S1/S2 structural loop. 
    more » « less
  2. Scandium nitride (ScN) has recently attracted much attention for its potential applications in thermoelectric energy conversion, as a semiconductor in epitaxial metal/semiconductor superlattices, as a substrate for GaN growth, and alloying it with AlN for 5G technology. This study was undertaken to better understand its stoichiometry and electronic structure. ScN (100) single crystals 2 mm thick were grown on a single crystal tungsten (100) substrate by a physical vapor transport method over a temperature range of 1900–2000 °C and a pressure of 20 Torr. The core level spectra of Sc 2p3/2,1/2 and N 1s were obtained by x-ray photoelectron spectroscopy (XPS). The XPS core levels were shifted by 1.1 eV toward higher values as the [Sc]:[N] ratio varied from 1.4 at 1900 °C to ∼1.0 at 2000 °C due to the higher binding energies in stoichiometric ScN. Angle-resolved photoemission spectroscopy measurements confirmed that ScN has an indirect bandgap of ∼1.2 eV.

     
    more » « less
  3. Most high-quality quantum dots (QDs) are synthesized in the organic phase, and are often coated with polymers for use in aqueous biological environments. QDs can exhibit fluorescence losses during phase transfer, but evaluating underlying mechanisms ( e.g. , oxidation, surface etching, loss of colloidal stability) can be challenging because of variation in synthesis methods. Here, fluorescence stability of QDs encapsulated in block co-polymer (BCP) micelles was investigated as a function of BCP terminal functionalization ( i.e. , –OH, –COOH, and –NH 2 groups) and synthesis method ( i.e. , electrohydrodynamic emulsification-mediated selfassembly (EE-SA), sonication, and manual shaking). Fluorescence losses, fluorescence intensity, energy spectra, and surface composition were assessed using spectrofluorometry and cathodoluminescence spectroscopy (CL) with integrated X-ray photoemission spectroscopy (XPS). QDs passivated using charged BCPs exhibited 50–80% lower fluorescence intensity than those displaying neutral groups ( e.g. , –OH), which CL/XPS revealed to result from oxidation of surface Cd to CdO. Fluorescence losses were higher for processes with slow formation speed, but minimized in the presence of poly(vinyl alcohol) (PVA) surfactant. These data suggest slower BCP aggregation kinetics rather than electrostatic chain repulsion facilitated QD oxidation. Thus, polymer coating method and BCP structure influence QD oxidation during phase transfer and should be selected to maximize fast aggregation kinetics. 
    more » « less
  4. Osteoblastic and chemical responses to Poly (ether ether ketone) (PEEK) material have been improved using a variety of low-temperature plasmas (LTPs). Surface chemical properties are modified, and can be used, using low-temperature plasma (LTP) treatments which change surface functional groups. These functional groups increase biomineralization, in simulated body fluid conditions, and cellular viability. PEEK scaffolds were treated, with a variety of LTPs, incubated in simulated body fluids, and then analyzed using multiple techniques. First, scanning electron microscopy (SEM) showed morphological changes in the biomineralization for all samples. Calcein staining, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) confirmed that all low-temperature plasma-treated groups showed higher levels of biomineralization than the control group. MTT cell viability assays showed LTP-treated groups had increased cell viability in comparison to non-LTP-treated controls. PEEK treated with triethyl phosphate plasma (TEP) showed higher levels of cellular viability at 82.91% ± 5.00 (n = 6) and mineralization. These were significantly different to both the methyl methacrylate (MMA) 77.38% ± 1.27, ethylene diamine (EDA) 64.75% ± 6.43 plasma-treated PEEK groups, and the control, non-plasma-treated group 58.80 ± 2.84. FTIR showed higher levels of carbonate and phosphate formation on the TEP-treated PEEK than the other samples; however, calcein staining fluorescence of MMA and TEP-treated PEEK had the highest levels of biomineralization measured by pixel intensity quantification of 101.17 ± 4.63 and 96.35 ± 3.58, respectively, while EDA and control PEEK samples were 89.53 ± 1.74 and 90.49 ± 2.33, respectively. Comparing different LTPs, we showed that modified surface chemistry has quantitatively measurable effects that are favorable to the cellular, biomineralization, and chemical properties of PEEK.

     
    more » « less
  5. Abstract Using lead phthalocyanine (PbPc) as surface doping material on black phosphorous (BP) we observe enhanced photo-excited carriers in the PbPc/BP heterostructure. The interfacial energy level alignment is investigated with ultra violet photoemission spectroscopy (UPS) and x-ray photoemission spectroscopy (XPS). The heterojunction is type I with gap of BP nested in that of PbPc, facilitating confinement of electrons and holes in BP. Ultrafast time-resolved two-photon photoemission (TR-2PPE) spectroscopy is used to study the influence of PbPc on the photo excited unoccupied electronic states and the dynamics of the relaxation processes. Monolayer PbPc can greatly increase the pump excited hot electrons and the 2 photon emission of BP. The enhanced population in the intermediate states is attributed to the straddling of the band alignment which benefits the photo excited electrons in PbPc transferring to BP. Density functional theory calculations supported the interface dipole and charge redistribution. Our results provide a fundamental understanding of the excellent opto-electrical response of PbPc/BP interface of promising application in the high efficient photo detectors. 
    more » « less