Quantum fluids exhibit quantum mechanical effects at the macroscopic level, which contrast strongly with classical fluids. Gain-dissipative solid-state exciton-polaritons systems are promising emulation platforms for complex quantum fluid studies at elevated temperatures. Recently, halide perovskite polariton systems have emerged as materials with distinctive advantages over other room-temperature systems for future studies of topological physics, non-Abelian gauge fields, and spin-orbit interactions. However, the demonstration of nonlinear quantum hydrodynamics, such as superfluidity and Čerenkov flow, which is a consequence of the renormalized elementary excitation spectrum, remains elusive in halide perovskites. Here, using homogenous halide perovskites single crystals, we report, in both one- and two-dimensional cases, the complete set of quantum fluid phase transitions from normal classical fluids to scatterless polariton superfluids and supersonic fluids—all at room temperature, clear consequences of the Landau criterion. Specifically, the supersonic Čerenkov wave pattern was observed at room temperature. The experimental results are also in quantitative agreement with theoretical predictions from the dissipative Gross-Pitaevskii equation. Our results set the stage for exploring the rich non-equilibrium quantum fluid many-body physics at room temperature and also pave the way for important polaritonic device applications.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract Transition metal trichalcogenides (TMTs) are two-dimensional (2D) systems with quasi-one-dimensional (quasi-1D) chains. These 2D materials are less susceptible to undesirable edge defects, which enhances their promise for low-dimensional optical and electronic device applications. However, so far, the performance of 2D devices based on TMTs has been hampered by contact-related issues. Therefore, in this review, a diligent effort has been made to both elucidate and summarize the interfacial interactions between gold and various TMTs, namely, In4Se3, TiS3, ZrS3, HfS3, and HfSe3. X-ray photoemission spectroscopy data, supported by the results of electrical transport measurements, provide insights into the nature of interactions at the Au/In4Se3, Au/TiS3, Au/ZrS3, Au/HfS3, and Au/HfSe3interfaces. This may help identify and pave a path toward resolving the contemporary contact-related problems that have plagued the performance of TMT-based nanodevices.
Graphical abstract I –V characteristics of (a) TiS3, (b) ZrS3, and (c) HfS3 -
Abstract Two‐dimensional (2D) transition metal dichalcogenides (TMDCs) such as MoS2exhibit exceptionally strong nonlinear optical responses, while nanoscale control of the amplitude, polar orientation, and phase of the nonlinear light in TMDCs remains challenging. In this work, by interfacing monolayer MoS2with epitaxial PbZr0.2Ti0.8O3(PZT) thin films and free‐standing PZT membranes, the amplitude and polarization of the second harmonic generation (SHG) signal are modulated via ferroelectric domain patterning, which demonstrates that PZT membranes can lead to in‐operando programming of nonlinear light polarization. The interfacial coupling of the MoS2polar axis with either the out‐of‐plane polar domains of PZT or the in‐plane polarization of domain walls tailors the SHG light polarization into different patterns with distinct symmetries, which are modeled via nonlinear electromagnetic theory. This study provides a new material platform that enables reconfigurable design of light polarization at the nanoscale, paving the path for developing novel optical information processing, smart light modulators, and integrated photonic circuits.
Free, publicly-accessible full text available December 3, 2023 -
Abstract The van der Waals magnets CrX3(X = I, Br, and Cl) exhibit highly tunable magnetic properties and are promising candidates for developing novel two‐dimensional (2D) spintronic devices such as magnetic tunnel junctions and spin tunneling transistors. Previous studies of the antiferromagnetic CrCl3have mainly focused on mechanically exfoliated samples. Controlled synthesis of high quality atomically thin flakes is critical for their technological implementation but has not been achieved to date. This work reports the growth of large CrCl3flakes down to monolayer thickness via the physical vapor transport technique. Both isolated flakes with well‐defined facets and long stripe samples with the trilayer portion exceeding 60 µm have been obtained. High‐resolution transmission electron microscopy studies show that the CrCl3flakes are single crystalline in the monoclinic structure, consistent with the Raman results. The room temperature stability of the CrCl3flakes decreases with decreasing thickness. The tunneling magnetoresistance of graphite/CrCl3/graphite tunnel junctions confirms that few‐layer CrCl3possesses in‐plane magnetic anisotropy and Néel temperature of 17 K. This study paves the path for developing CrCl3‐based scalable 2D spintronic applications.
-
Abstract Enhanced electromagnetic fields within plasmonic nanocavity mode volumes enable multiple significant effects that lead to applications in both the linear and nonlinear optical regimes. In this work, enhanced second‐harmonic generation (SHG) is demonstrated from individual plasmonic nanopatch antennas (NPAs) which are formed by separating silver nanocubes from a smooth gold film using a sub‐10 nm zinc oxide spacer layer. When the NPAs are excited at their fundamental plasmon frequency, a 104‐fold increase in the intensity of the SHG wave is observed. Moreover, by integrating quantum emitters that have an absorption energy at the fundamental frequency, a second‐order nonlinear exciton–polariton strong coupling response is observed with a Rabi splitting energy of 19 meV. The nonlinear frequency conversion using NPAs thus provides an excellent platform for nonlinear control of the light−matter interactions in both weak and strong coupling regimes which will have a great potential for applications in optical engineering and information processing.
-
Abstract Electric currents carrying a net spin polarization are widely used in spintronics, whereas globally spin-neutral currents are expected to play no role in spin-dependent phenomena. Here we show that, in contrast to this common expectation, spin-independent conductance in compensated antiferromagnets and normal metals can be efficiently exploited in spintronics, provided their magnetic space group symmetry supports a non-spin-degenerate Fermi surface. Due to their momentum-dependent spin polarization, such antiferromagnets can be used as active elements in antiferromagnetic tunnel junctions (AFMTJs) and produce a giant tunneling magnetoresistance (TMR) effect. Using RuO2as a representative compensated antiferromagnet exhibiting spin-independent conductance along the [001] direction but a non-spin-degenerate Fermi surface, we design a RuO2/TiO2/RuO2(001) AFMTJ, where a globally spin-neutral charge current is controlled by the relative orientation of the Néel vectors of the two RuO2electrodes, resulting in the TMR effect as large as ~500%. These results are expanded to normal metals which can be used as a counter electrode in AFMTJs with a single antiferromagnetic layer or other elements in spintronic devices. Our work uncovers an unexplored potential of the materials with no global spin polarization for utilizing them in spintronics.
-
Abstract Resonant tunneling is a quantum‐mechanical effect in which electron transport is controlled by the discrete energy levels within a quantum‐well (QW) structure. A ferroelectric resonant tunneling diode (RTD) exploits the switchable electric polarization state of the QW barrier to tune the device resistance. Here, the discovery of robust room‐temperature ferroelectric‐modulated resonant tunneling and negative differential resistance (NDR) behaviors in all‐perovskite‐oxide BaTiO3/SrRuO3/BaTiO3QW structures is reported. The resonant current amplitude and voltage are tunable by the switchable polarization of the BaTiO3ferroelectric with the NDR ratio modulated by ≈3 orders of magnitude and an OFF/ON resistance ratio exceeding a factor of 2 × 104. The observed NDR effect is explained an energy bandgap between Ru‐t2gand Ru‐egorbitals driven by electron–electron correlations, as follows from density functional theory calculations. This study paves the way for ferroelectric‐based quantum‐tunneling devices in future oxide electronics.
-
Abstract Realizing van der Waals (vdW) epitaxy in the 1980s represents a breakthrough that circumvents the stringent lattice matching and processing compatibility requirements in conventional covalent heteroepitaxy. However, due to the weak vdW interactions, there is little control over film qualities by the substrate. Typically, discrete domains with a spread of misorientation angles are formed, limiting the applicability of vdW epitaxy. Here, the epitaxial growth of monocrystalline, covalent Cr5Te82D crystals on monolayer vdW WSe2by chemical vapor deposition is reported, driven by interfacial dative bond formation. The lattice of Cr5Te8, with a lateral dimension of a few tens of micrometers, is fully commensurate with that of WSe2via 3 × 3 (Cr5Te8)/7 × 7 (WSe2) supercell matching, forming a single‐crystalline moiré superlattice. This work establishes a conceptually distinct paradigm of thin‐film epitaxy, termed “dative epitaxy”, which takes full advantage of covalent epitaxy with chemical bonding for fixing the atomic registry and crystal orientation, while circumventing its stringent lattice matching and processing compatibility requirements; conversely, it ensures the full flexibility of vdW epitaxy, while avoiding its poor orientation control. Cr5Te82D crystals grown by dative epitaxy exhibit square magnetic hysteresis, suggesting minimized interfacial defects that can serve as pinning sites.
-
Free, publicly-accessible full text available February 1, 2024
-
Previously, the infrared permittivity tensor of monoclinic β-Ga 2 O 3 crystals has been determined using ellipsometry reflection measurements from two differently oriented monoclinic β-Ga 2 O 3 crystals with surfaces parallel to (010) and (−201). The (010) surface places the crystallographic a-c plane in the table of the instrument. The permittivity tensor consists of four complex values, and in order to compute it, four or more combinations of measurements are required at selected table rotations and incidence angles. However, the (010) orientation also places the transverse optical (TO) modes with Au symmetry parallel to the z-axis of the instrument, and we find that these modes are not fully excited and, hence, not measurable due to underlying selection rules. This makes additional measurements on surfaces other than (010) necessary. The second orientation has been the (−201) crystal, which places the crystallographic b axis in the plane of the table to access the transverse Au phonons. In prior work, the overall tensor has been determined by combining measurements of the two crystal orientations [Schubert et al., Phys. Rev. B 93, 125209 (2016)]. The goal of the work here is to find single crystal orientations for which all TO modes can bemore »Free, publicly-accessible full text available January 1, 2024