skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Strong Metal–Sulfur Hybridization in the Conduction Band of the Quasi-One-Dimensional Transition-Metal Trichalcogenides: TiS 3 and ZrS 3
Award ID(s):
2044049
PAR ID:
10393123
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Journal of Physical Chemistry C
Volume:
126
Issue:
41
ISSN:
1932-7447
Page Range / eLocation ID:
17647 to 17655
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The chemistry of zirconium-based metal-organic polyhedra (ZrMOPs) is often limited by their poor solubilities. Despite their attractive features—including high yielding and facile syntheses, predictable topologies, high stability, and tunability—problematic solubilities have caused ZrMOPs to be under-studied and under-applied. Although these cages have been synthesized with a wide variety of carboxylate-based bridging ligands, we explored a new method for ZrMOP functionalization via node-modification, which we hypothesized could influence solubility. Herein, we report ZrMOPs with benzyl-, vinylbenzyl-, and trifluoromethylbenzyl-pendant groups decorating cyclopentadienyl moieties. The series was characterized by 1 H/ 19 F NMR, high-resolution mass spectrometry, infrared spectroscopy, and single-crystal X-ray diffraction. The effects of node functionalities on ZrMOP solubility were quantified using inductively coupled plasma mass spectrometry. Substitution caused a decrease in water solubility, but for certain organic solvents, e.g. DMF, solubility could be enhanced by ∼20×, from 16 μM for the unfunctionalized cage to 310 μM for the vinylbenzyl- and trifluoromethylbenzyl-cages. 
    more » « less
  2. Noncentrosymmetric (NCS) silicon phosphides have recently shown promise as nonlinear optical materials due to the balance of strong second harmonic generation (SHG) activity and large laser damage threshold (LDT) values. While arsenides of electropositive metals, such as Ba, Mg, Zn, and Cd were explored, no NLO properties for transition metal tetrel arsenides have yet been reported. IrSi 3 As 3 is a novel compound, isostructural to IrSi 3 P 3 , which allows a direct investigation on the impact of the heavier pnictogen on structural and optical properties. The direct bandgap is reduced from 1.8 eV for IrSi 3 P 3 to 1.55 eV for IrSi 3 As 3 . Unlike many NLO chalcogenides, IrSi 3 As 3 has a small bandgap without compromising the balance between SHG signal and high LDT values. IrSi 3 As 3 was found to outperform both its phosphide analogue IrSi 3 P 3 , as well as the state-of-the-art infrared SHG standard AgGaS 2 (AGS) in SHG activity and the LDT. 
    more » « less