skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reaction stoichiometry directs the architecture of trimetallic nanostructures produced via galvanic replacement
Galvanic replacement (GR) of monometallic nanoparticles (NPs) provides a versatile route to interesting bimetallic nanostructures, with examples such as nanoboxes, nanocages, nanoshells, nanorings, and heterodimers reported. The replacement of bimetallic templates by a more noble metal can generate trimetallic nanostructures with different architectures, where the specific structure has been shown to depend on the relative reduction potentials of the participating metals and lattice mismatch between the depositing and template metal phases. Now, the role of reaction stoichiometry is shown to direct the overall architecture of multimetallic nanostructures produced by GR with bimetallic templates. Specifically, the number of initial metal islands deposited on a NP template depends on the reaction stoichiometry. This outcome was established by studying the GR process between intermetallic PdCu (i-PdCu) NPs and either AuCl 2 − (Au 1+ ) or AuCl 4 − (Au 3+ ), producing i-PdCu–Au heterostructures. Significantly, multiple Au domains form in the case of GR with AuCl 2 − while only single Au domains form in the case of AuCl 4 − . These different NP architectures and their connection to reaction stoichiometry are consistent with Stranski–Krastanov (SK) growth, providing general guidelines on how the conditions of GR processes can be used to achieve multimetallic nanostructures with different defined architectures.  more » « less
Award ID(s):
1904499 2203349
PAR ID:
10393156
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Nanoscale
ISSN:
2040-3364
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Galvanic replacement reactions are a reliable method for transforming monometallic nanotemplates into bimetallic products with complex nanoscale architectures. When replacing bimetallic nanotemplates, even more complex multimetallic products can be made, with final nanocrystal shapes and architectures depending on multiple processes, including Ostwald ripening and the Kirkendall effect. Galvanic replacement, therefore, is a promising tool in increasing the architectural complexity of multimetallic templates, especially if we can identify and control the relevant processes in a given system and apply them more broadly. Here, we study the transformation of intermetallic PdCu nanoparticles in the presence of HAuCl 4 and H 2 PtCl 6 , both of which are capable of oxidizing both Pd and Cu. Replacement products consistently lost Cu more quickly than Pd, preserved the crystal structure of the original intermetallic template, and grew a new phase on the sacrificial template. In this way, atomic and nanometer-scale architectures are integrated within individual nanocrystals. Product morphologies included faceting of the original spherical particles as well as formation of core@shell and Janus-style particles. These variations are rationalized in terms of differing diffusion behaviors. Overall, galvanic replacement of multimetallic templates is shown to be a route toward increasingly exotic particle architectures with control exerted on both Angstrom and nanometer-scale features, while inviting further consideration of template and oxidant choices. 
    more » « less
  2. Abstract A top‐down lithographic patterning and deposition process is reported for producing nanoparticles (NPs) with well‐defined sizes, shapes, and compositions that are often not accessible by wet‐chemical synthetic methods. These NPs are ligated and harvested from the substrate surface to prepare colloidal NP dispersions. Using a template‐assisted assembly technique, fabricated NPs are driven by capillary forces to assemble into size‐ and shape‐engineered templates and organize into open or close‐packed multi‐NP structures or NP metamolecules. The sizes and shapes of the NPs and of the templates control the NP number, coordination, interparticle gap size, disorder, and location of defects such as voids in the NP metamolecules. The plasmonic resonances of polygonal‐shaped Au NPs are exploited to correlate the structure and optical properties of assembled NP metamolecules. Comparing open and close‐packed architectures highlights that introduction of a center NP to form close‐packed assemblies supports collective interactions, altering magnetic optical modes and multipolar interactions in Fano resonances. Decreasing the distance between NPs strengthens the plasmonic coupling, and the structural symmetries of the NP metamolecules determine the orientation‐dependent scattering response. 
    more » « less
  3. Abstract Facet‐selective etching and deposition, as determined by the landscape of surface energy, represent two powerful methods for the transformation of noble‐metal nanocrystals into nanostructures with complex shapes or morphologies. This review highlights the use of these two methods, including integration of them, for the fabrication of novel monometallic and bimetallic nanostructures with enhanced properties. We start with an introduction to the role of surface capping in controlling the facet‐selective etching or deposition on the surface of Ag nanocrystals, followed by a case study of how to maneuver etching and deposition at different facets of Pd nanocrystals for the fabrication of nanoframes. We then introduce the use of galvanic replacement to accomplish selective etching and deposition on two different facets in an orthogonal manner, transforming Pd nanocubes into Pd−Pt octapods. By complementing galvanic replacement with a chemical reduction reaction, it is also feasible to control the rates of these two reactions for the conversion of Ag nanocubes into Ag@Ag−Au concave nanocubes and Ag@Au core‐shell nanocubes. These transformation methods not only greatly increase the shape diversity of metal nanocrystals but also offer nanocrystals with enhanced plasmonic and/or catalytic properties. 
    more » « less
  4. Abstract Mono‐ and multimetallic nanoparticles (NPs) have diverse and tunable physicochemical properties that arise from their compositions as well as crystallite size and shape. The ability to control precisely the composition and structure of NPs through synthesis is central to achieving state‐of‐the‐art designer metal NPs for use as catalysts and electrocatalysts. However, a major limitation to the use of designer metal NPs as catalysts is the ability to scale their syntheses while maintaining structural precision. To address this challenge, continuous flow routes to metal NPs involving the use of droplet microreactors are being developed, providing the synthetic versatility necessary to achieve known and completely new nanostructures. This progress report outlines how the chemistry and process parameters of droplet microreactors can be used to achieve high performing nanocatalysts through control of NP composition, size, shape, and architecture and outlines directions toward previously unimaginable nanostructures. 
    more » « less
  5. Gold nanoparticles (Au NPs) have been extensively used as artificial enzymes, but their performance is still limited. We address this challenge by focusing on multimetallic nanorattles comprising an Au core inside a bimetallic AgAu shell, separated by a void (Au@AgAu NRs). They were prepared by a galvanic replacement approach and contained an ultrathin and porous shell comprising an AgAu alloy. By investigating the peroxide-like activity using TMB oxidation as a model transformation, we have found an increase of 152 fold in activities for the NRs relative to conventional Au NPs. Based on the kinetics results, the NRs also showed the lowest K m , indicating better interaction with the substrate and faster product formation. We also observed a linear relationship between the concentration of the product and oxTMB as a function of H 2 O 2 concentration, which could be further applied for H 2 O 2 sensing applications (colorimetric detection). These data suggest that the NRs enable the combined effect of an increased surface area relative to solid counterparts, the possibility of exposing highly active surface sites, and the exploitation of nanoconfinement effects due to the void regions between the core and shell components. These results provide important insights into the optimization of peroxidase-like performances beyond what can be achieved in conventional NPs and may inspire the development of better-performing artificial enzymes. 
    more » « less