Novel Upper Capacitor for Half-Bridge Switching Converter Topologies that Reduces EMI and Capacitor Ripple Current
- Award ID(s):
- 1653574
- PAR ID:
- 10393169
- Date Published:
- Journal Name:
- IEEE/AIAA Transportation Electrification Conference and Electric Aircraft Technologies Symposium (ITEC+EATS)
- Page Range / eLocation ID:
- 37 to 42
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Origami patterns have previously been investigated for novel mechanical properties and applications to soft and deployable robotics. This work models and characterizes the mechanical and electrical properties of origami-patterned capacitive strain sensors. Miura-patterned capacitors with different fold angles are fabricated with a silicone body and foil electrodes. The planar strain sensitivity ratio is tunable from 0.2 to 0.5 with fold angles, while all-soft patterns demonstrate low mechanical tunability through fold angle. We conclude by offering recommendations for designing and modeling future origami-patterned soft material sensors.more » « less
-
The self-interference (SI) channels in full-duplex (FD) radios have large nano-second-scale delay spreads, which poses a significant challenge in designing SI cancelers that can emulate the SI channel over wide bandwidths. Passive implementations of high delay lines have a prohibitively large form factor and loss when implemented on silicon, whereas active implementations suffer from noise and linearity penalties. In this work, we leverage time-interleaved multi-path switched-capacitor (SC) circuits to provide large wideband delays with a small form factor and low power (LP) consumption to implement RF and baseband (BB) cancelers in an FD receiver (RX). We utilize capacitor stacking to obtain passive voltage gain to compensate for the loss of these delay elements, thus permitting an increased number of interleaved paths and, hence, a higher delay. Furthermore, to reduce the RX noise figure (NF) penalty due to injecting the cancellation signal into the receiver, we introduce a novel low-noise trans-impedance amplifier (LNTA) architecture, which injects the cancellation signal into RX and also accomplishes finite impulse response (FIR) filter weighting and summation. The FD receiver is implemented in a standard 65-nm CMOS process and operates from 0.1 to 1 GHz. The RF/BB canceler delay cells have real-/complex-valued weighting with delays rangingmore » « less
An official website of the United States government

