skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fast electrostatic analysis for VLSI aging based on generative learning
In this paper, we propose an image generative learning framework for electrostatic analysis for VLSI dielectric aging estimation. This work leverages the observation that the synthesized multi layer interconnect VLSI layout can be viewed as layered 2D images and the analysis can be viewed as the image generation. The efficient image-to-image translation property of generative learning is therefore used to obtain the potential distribution on the respective interconnect layers. Compared with the recent CNN-based electrostatic analysis method, the new method can lead to 1.54x speedup for inference due to reduced neural network structures and parameters. We demonstrate the proposed method for time-dependent dielectric breakdown analysis and show the significant speedup compared to the traditional numerical method.  more » « less
Award ID(s):
2007135
PAR ID:
10393259
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proc. of the 2020 ACM/IEEE Workshop on Machine Learning for CAD (MLCAD'21)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Electromigration (EM) becomes a major concern for VLSI circuits as the technology advances in the nanometer regime. With Korhonen equations, EM assessment for VLSI circuits remains challenged due to the increasing integrated density. VLSI multisegment interconnect trees can be naturally viewed as graphs. Based on this observation, we propose a new graph convolution network (GCN) model, which is called {\it EMGraph} considering both node and edge embedding features, to estimate the transient EM stress of interconnect trees. Compared with recently proposed generative adversarial network (GAN) based stress image-generation method, EMGraph model can learn more transferable knowledge to predict stress distributions on new graphs without retraining via inductive learning. Trained on the large dataset, the model shows less than 1.5% averaged error compared to the ground truth results and is orders of magnitude faster than both COMSOL and state-of-the-art method. It also achieves smaller model size, 4X accuracy and 14X speedup over the GAN-based method. 
    more » « less
  2. Electromigration (EM) analysis for complicated interconnects requires the solving of partial differential equations, which is expensive. In this paper, we propose a fast transient hydrostatic stress analysis for EM failure assessment for multi-segment interconnects using generative adversarial networks (GANs). Our work is inspired by the image synthesis and feature of generative deep neural networks. The stress evaluation of multi-segment interconnects, modeled by partial differential equations, can be viewed as time-varying 2D-images-to-image problem where the input is the multi-segment interconnects topology with current densities and the output is the EM stress distribution in those wire segments at the given aging time. We show that the conditional GAN can be exploited to attend the temporal dynamics for modeling the time-varying dynamic systems like stress evolution over time. The resulting algorithm, called {\it EM-GAN}, can quickly give accurate stress distribution of a general multi-segment wire tree for a given aging time, which is important for full-chip fast EM failure assessment. Our experimental results show that the EM-GAN shows 6.6\% averaged error compared to COMSOL simulation results with orders of magnitude speedup. It also delivers $$8.3 \times$$ speedup over state-of-the-art analytic based EM analysis solver. 
    more » « less
  3. A multiterminal obstacle-avoiding pathfinding approach is proposed. The approach is inspired by deep image learning. The key idea is based on training a conditional generative adversarial network (cGAN) to interpret a pathfinding task as a graphical bitmap and consequently map a pathfinding task onto a pathfinding solution represented by another bitmap. To enable the proposed cGAN pathfinding, a methodology for generating synthetic dataset is also proposed. The cGAN model is implemented in Python/Keras, trained on synthetically generated data, evaluated on practical VLSI benchmarks, and compared with state-of-the-art. Due to effective parallelization on GPU hardware, the proposed approach yields a state-of-the-art-like wirelength and a better runtime and throughput for moderately complex pathfinding tasks. However, the runtime and throughput with the proposed approach remain constant with an increasing task complexity, promising orders of magnitude improvement over state-of-the-art in complex pathfinding tasks. The cGAN pathfinder can be exploited in numerous high throughput applications, such as, navigation, tracking, and routing in complex VLSI systems. The last is of particular interest to this work. 
    more » « less
  4. As the technology node of VLSI designs advances to sub10 nm, two interconnect-centric metrics of a circuit, the interconnect complexity (either number of interconnects or wirelength/WL) and congestion, become critically important across all design stages alongside conventional resource or function-unit (FU)-centric metrics like area/number-of-FUs and leakage power. High Level synthesis (HLS), one of the earliest and most impactful design stages, rarely monitors interconnect metrics, which makes their recovery at later stages very difficult. HLS algorithms and tools typically perform FU-centric minimization via operation scheduling, module selection (S&MS) and binding. As a consequence, it mostly overlooks interconnect-based metrics. In this paper, we explore whether this can adversely affect interconnect metrics, and in general explore the correlation between FU-centric optimization in S&MS, and the resulting interconnect metrics co-optimized (along with FU metrics) in the later binding stage(s). For this purpose we develop a probabilistic analysis for post-scheduling binding to estimate interconnect metrics, and verify its accuracy by comparison to empirical results across different scheduling techniques that generate different degrees of FU optimization. Based on both empirical and analytical results we predict how interconnects metrics will pan out with different degrees of FU optimization. Finally, based on our analysis, we also provide suggestions to improve interconnect metrics for whatever FU optimization degree an available S&MS technique can achieve. 
    more » « less
  5. Electromigration (EM) is still the most important reliability concern for VLSI systems, especially at the nanometer regime. EM immortality check is an important step for full-chip EM signoff analysis. In this paper, we propose a new electromigration (EM) immortality check method for multi-segment interconnect considering the impacts of Joule heating induced temperature gradient. Temperature gradients from metal Joule heating, called thermal migration, can be a significant force for the metal atomic migrations, and these impacts get more significant as technology scales down. Compared to existing methods, the new method can consider the spatial temperature gradient due to Joule heating for multi-segment wires for the first time. We derive the analytic solution for the resulting steady-state EM-thermal migration stress distribution problem. Then we develop the new temperature-aware voltage-based EM immortality check method considering the multi-segment temperature migration effects, which carries all the benefits of the recently proposed voltage-based EM immortality method for multi-segment interconnects. Numerical results on an IBM power grid and self synthesized power delivery networks show that the proposed temperature-aware EM immortality check method is much more accurate than recently proposed state of the art EM immortality method. 
    more » « less