Electromigration (EM) is a major failure effect for on-chip power grid networks of deep submicron VLSI circuits. EM degradation of metal grid lines can lead to excessive voltage drops (IR drops) before the target lifetime. In this paper, we propose a fast data-driven EM-induced IR drop analysis framework for power grid networks, named {\it GridNet}, based on the conditional generative adversarial networks (CGAN). It aims to accelerate the incremental full-chip EM-induced IR drop analysis, as well as IR drop violation fixing during the power grid design and optimization. More importantly, {\it GridNet} can naturally leverage the differentiable feature of deep neural networks (DNN) to {\it obtain the sensitivity information of node voltage with respect to the wire resistance (or width) with marginal cost}. {\it GridNet} treats continuous time and the given electrical features as input conditions, and the EM-induced time-varying voltage of power grid networks as the conditional outputs, which are represented as data series images. We show that {\it GridNet} is able to learn the temporal dynamics of the aging process in continuous time domain. Besides, we can take advantage of the sensitivity information provided by {\it GridNet} to perform efficient localized IR drop violation fixing in the latemore »
EM-GAN: Data-driven fast stress analysis for multi-segment interconnects
Electromigration (EM) analysis for complicated interconnects
requires the solving of partial differential equations, which is
expensive. In this paper, we propose a fast transient hydrostatic
stress analysis for EM failure assessment for multi-segment
interconnects using generative adversarial networks (GANs). Our
work is inspired by the image synthesis and feature of generative
deep neural networks. The stress evaluation of multi-segment
interconnects, modeled by partial differential equations, can be
viewed as time-varying 2D-images-to-image problem where the input is
the multi-segment interconnects topology with current densities and
the output is the EM stress distribution in those wire segments at
the given aging time. We show that the conditional GAN can be
exploited to attend the temporal dynamics for modeling the
time-varying dynamic systems like stress evolution over time.
The resulting algorithm, called {\it EM-GAN}, can quickly give accurate
stress distribution of a general multi-segment wire tree for a given
aging time, which is important for full-chip fast EM failure
assessment. Our experimental results show that the EM-GAN shows
6.6\% averaged error compared to COMSOL simulation results with
orders of magnitude speedup. It also delivers $8.3 \times$ speedup
over state-of-the-art analytic based EM analysis solver.
- Publication Date:
- NSF-PAR ID:
- 10279540
- Journal Name:
- Proc. IEEE Int. Conf. on Computer Design (ICCD),
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, we propose a new spatial temperature aware transient EM induced stress analysis method. The new method consists of two new contributions: First, we propose a new TM-aware void saturation volume estimation method for fast immortality check in the post-voiding phase for the first time. We derive the analytic formula to estimate the void saturation in the presence of spatial temperature gradients due to Joule heating. Second, we developed a fast numerical solution for EM-induced stress analysis for multi-segment interconnect trees considering TM effect. The new method first transforms the coupled EM-TM partial differential equations into linear time-invariant ordinary differential equations (ODEs). Then extended Krylov subspace-based reduction technique is employed to reduce the size of the original system matrices so that they can be efficiently simulated in the time domain. The proposed method can perform the simulation process for both void nucleation and void growth phases under time-varying input currents and position-dependent temperatures. The numerical results show that, compared to the recently proposed semi-analytic EM-TM method, the proposed method can lead to about 28x speedup on average for the interconnect with up to 1000 branches for both void nucleation and growth phases with negligible errors.
-
Electromigration (EM) becomes a major concern for VLSI circuits as the technology advances in the nanometer regime. With Korhonen equations, EM assessment for VLSI circuits remains challenged due to the increasing integrated density. VLSI multisegment interconnect trees can be naturally viewed as graphs. Based on this observation, we propose a new graph convolution network (GCN) model, which is called {\it EMGraph} considering both node and edge embedding features, to estimate the transient EM stress of interconnect trees. Compared with recently proposed generative adversarial network (GAN) based stress image-generation method, EMGraph model can learn more transferable knowledge to predict stress distributions on new graphs without retraining via inductive learning. Trained on the large dataset, the model shows less than 1.5% averaged error compared to the ground truth results and is orders of magnitude faster than both COMSOL and state-of-the-art method. It also achieves smaller model size, 4X accuracy and 14X speedup over the GAN-based method.
-
This paper presents a new power grid network design and optimization technique that considers the new EM immortality constraint due to EM void saturation volume for multi-segment interconnects. Void may grow to its saturation volume without changing the wire resistance significantly. However, this phenomenon was ignored in existing EM-aware optimization methods. By considering this new effect, we can remove more conservativeness in the EM-aware on-chip power grid design. Along with recently proposed nucleation phase immortality constraint for multi-segment wires, we show that both EM immortality constraints can be naturally integrated into the existing programming based power grid optimization framework. To further mitigate the overly conservative problem of existing immortality-constrained optimization methods, we further explore two strategies: first we size up failed wires to meet one of immorality conditions subject to design rules; second, we consider the EM-induced aging effects on power supply networks for a targeted lifetime, which allows some short-lifetime wires to fail and optimizes the rest of the wires. Numerical results on a number of IBM and self-generated power supply networks demonstrate that the new method can reduce more power grid area compared to the existing EM-immortality constrained optimizations. Furthermore, the new method can optimize power grids withmore »
-
Electromigration (EM) is still the most important reliability concern for VLSI systems, especially at the nanometer regime. EM immortality check is an important step for full-chip EM signoff analysis. In this paper, we propose a new electromigration (EM) immortality check method for multi-segment interconnect considering the impacts of Joule heating induced temperature gradient. Temperature gradients from metal Joule heating, called thermal migration, can be a significant force for the metal atomic migrations, and these impacts get more significant as technology scales down. Compared to existing methods, the new method can consider the spatial temperature gradient due to Joule heating for multi-segment wires for the first time. We derive the analytic solution for the resulting steady-state EM-thermal migration stress distribution problem. Then we develop the new temperature-aware voltage-based EM immortality check method considering the multi-segment temperature migration effects, which carries all the benefits of the recently proposed voltage-based EM immortality method for multi-segment interconnects. Numerical results on an IBM power grid and self synthesized power delivery networks show that the proposed temperature-aware EM immortality check method is much more accurate than recently proposed state of the art EM immortality method.