skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 15 until 2:00 AM ET on Saturday, November 16 due to maintenance. We apologize for the inconvenience.


Title: Multifaceted protein–protein interaction prediction based on Siamese residual RCNN
Abstract Motivation

Sequence-based protein–protein interaction (PPI) prediction represents a fundamental computational biology problem. To address this problem, extensive research efforts have been made to extract predefined features from the sequences. Based on these features, statistical algorithms are learned to classify the PPIs. However, such explicit features are usually costly to extract, and typically have limited coverage on the PPI information.

Results

We present an end-to-end framework, PIPR (Protein–Protein Interaction Prediction Based on Siamese Residual RCNN), for PPI predictions using only the protein sequences. PIPR incorporates a deep residual recurrent convolutional neural network in the Siamese architecture, which leverages both robust local features and contextualized information, which are significant for capturing the mutual influence of proteins sequences. PIPR relieves the data pre-processing efforts that are required by other systems, and generalizes well to different application scenarios. Experimental evaluations show that PIPR outperforms various state-of-the-art systems on the binary PPI prediction problem. Moreover, it shows a promising performance on more challenging problems of interaction type prediction and binding affinity estimation, where existing approaches fall short.

Availability and implementation

The implementation is available at https://github.com/muhaochen/seq_ppi.git.

Supplementary information

Supplementary data are available at Bioinformatics online.

 
more » « less
NSF-PAR ID:
10425984
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics
Volume:
35
Issue:
14
ISSN:
1367-4803
Format(s):
Medium: X Size: p. i305-i314
Size(s):
p. i305-i314
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Summary

    Computational methods to predict protein–protein interaction (PPI) typically segregate into sequence-based ‘bottom-up’ methods that infer properties from the characteristics of the individual protein sequences, or global ‘top-down’ methods that infer properties from the pattern of already known PPIs in the species of interest. However, a way to incorporate top-down insights into sequence-based bottom-up PPI prediction methods has been elusive. We thus introduce Topsy-Turvy, a method that newly synthesizes both views in a sequence-based, multi-scale, deep-learning model for PPI prediction. While Topsy-Turvy makes predictions using only sequence data, during the training phase it takes a transfer-learning approach by incorporating patterns from both global and molecular-level views of protein interaction. In a cross-species context, we show it achieves state-of-the-art performance, offering the ability to perform genome-scale, interpretable PPI prediction for non-model organisms with no existing experimental PPI data. In species with available experimental PPI data, we further present a Topsy-Turvy hybrid (TT-Hybrid) model which integrates Topsy-Turvy with a purely network-based model for link prediction that provides information about species-specific network rewiring. TT-Hybrid makes accurate predictions for both well- and sparsely-characterized proteins, outperforming both its constituent components as well as other state-of-the-art PPI prediction methods. Furthermore, running Topsy-Turvy and TT-Hybrid screens is feasible for whole genomes, and thus these methods scale to settings where other methods (e.g. AlphaFold-Multimer) might be infeasible. The generalizability, accuracy and genome-level scalability of Topsy-Turvy and TT-Hybrid unlocks a more comprehensive map of protein interaction and organization in both model and non-model organisms.

    Availability and implementation

    https://topsyturvy.csail.mit.edu.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  2. Abstract Background

    Protein–protein interaction (PPI) is vital for life processes, disease treatment, and drug discovery. The computational prediction of PPI is relatively inexpensive and efficient when compared to traditional wet-lab experiments. Given a new protein, one may wish to find whether the protein has any PPI relationship with other existing proteins. Current computational PPI prediction methods usually compare the new protein to existing proteins one by one in a pairwise manner. This is time consuming.

    Results

    In this work, we propose a more efficient model, called deep hash learning protein-and-protein interaction (DHL-PPI), to predict all-against-all PPI relationships in a database of proteins. First, DHL-PPI encodes a protein sequence into a binary hash code based on deep features extracted from the protein sequences using deep learning techniques. This encoding scheme enables us to turn the PPI discrimination problem into a much simpler searching problem. The binary hash code for a protein sequence can be regarded as a number. Thus, in the pre-screening stage of DHL-PPI, the string matching problem of comparing a protein sequence against a database withMproteins can be transformed into a much more simpler problem: to find a number inside a sorted array of lengthM. This pre-screening process narrows down the search to a much smaller set of candidate proteins for further confirmation. As a final step, DHL-PPI uses the Hamming distance to verify the final PPI relationship.

    Conclusions

    The experimental results confirmed that DHL-PPI is feasible and effective. Using a dataset with strictly negative PPI examples of four species, DHL-PPI is shown to be superior or competitive when compared to the other state-of-the-art methods in terms of precision, recall or F1 score. Furthermore, in the prediction stage, the proposed DHL-PPI reduced the time complexity from$$O(M^2)$$O(M2)to$$O(M\log M)$$O(MlogM)for performing an all-against-all PPI prediction for a database withMproteins. With the proposed approach, a protein database can be preprocessed and stored for later search using the proposed encoding scheme. This can provide a more efficient way to cope with the rapidly increasing volume of protein datasets.

     
    more » « less
  3. Abstract Motivation

    As an increasing amount of protein–protein interaction (PPI) data becomes available, their computational interpretation has become an important problem in bioinformatics. The alignment of PPI networks from different species provides valuable information about conserved subnetworks, evolutionary pathways and functional orthologs. Although several methods have been proposed for global network alignment, there is a pressing need for methods that produce more accurate alignments in terms of both topological and functional consistency.

    Results

    In this work, we present a novel global network alignment algorithm, named ModuleAlign, which makes use of local topology information to define a module-based homology score. Based on a hierarchical clustering of functionally coherent proteins involved in the same module, ModuleAlign employs a novel iterative scheme to find the alignment between two networks. Evaluated on a diverse set of benchmarks, ModuleAlign outperforms state-of-the-art methods in producing functionally consistent alignments. By aligning Pathogen–Human PPI networks, ModuleAlign also detects a novel set of conserved human genes that pathogens preferentially target to cause pathogenesis.

    Availability

    http://ttic.uchicago.edu/∼hashemifar/ModuleAlign.html

    Contact

    canzar@ttic.edu or j3xu.ttic.edu

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  4. Abstract Motivation

    The prevalence of high-throughput experimental methods has resulted in an abundance of large-scale molecular and functional interaction networks. The connectivity of these networks provides a rich source of information for inferring functional annotations for genes and proteins. An important challenge has been to develop methods for combining these heterogeneous networks to extract useful protein feature representations for function prediction. Most of the existing approaches for network integration use shallow models that encounter difficulty in capturing complex and highly non-linear network structures. Thus, we propose deepNF, a network fusion method based on Multimodal Deep Autoencoders to extract high-level features of proteins from multiple heterogeneous interaction networks.

    Results

    We apply this method to combine STRING networks to construct a common low-dimensional representation containing high-level protein features. We use separate layers for different network types in the early stages of the multimodal autoencoder, later connecting all the layers into a single bottleneck layer from which we extract features to predict protein function. We compare the cross-validation and temporal holdout predictive performance of our method with state-of-the-art methods, including the recently proposed method Mashup. Our results show that our method outperforms previous methods for both human and yeast STRING networks. We also show substantial improvement in the performance of our method in predicting gene ontology terms of varying type and specificity.

    Availability and implementation

    deepNF is freely available at: https://github.com/VGligorijevic/deepNF.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  5. Abstract Motivation

    Accurate modeling of protein–protein interaction interface is essential for high-quality protein complex structure prediction. Existing approaches for estimating the quality of a predicted protein complex structural model utilize only the physicochemical properties or energetic contributions of the interacting atoms, ignoring evolutionarily information or inter-atomic multimeric geometries, including interaction distance and orientations.

    Results

    Here, we present PIQLE, a deep graph learning method for protein–protein interface quality estimation. PIQLE leverages multimeric interaction geometries and evolutionarily information along with sequence- and structure-derived features to estimate the quality of individual interactions between the interfacial residues using a multi-head graph attention network and then probabilistically combines the estimated quality for scoring the overall interface. Experimental results show that PIQLE consistently outperforms existing state-of-the-art methods including DProQA, TRScore, GNN-DOVE and DOVE on multiple independent test datasets across a wide range of evaluation metrics. Our ablation study and comparison with the self-assessment module of AlphaFold-Multimer repurposed for protein complex scoring reveal that the performance gains are connected to the effectiveness of the multi-head graph attention network in leveraging multimeric interaction geometries and evolutionary information along with other sequence- and structure-derived features adopted in PIQLE.

    Availability and implementation

    An open-source software implementation of PIQLE is freely available at https://github.com/Bhattacharya-Lab/PIQLE.

    Supplementary information

    Supplementary data are available at Bioinformatics Advances online.

     
    more » « less