A series of laboratory experiments were conducted to investigate the characteristics of a dense gravity current flowing down an inclined slope into a quiescent two-layer stratification. The presence of the pycnocline causes the gravity current to split and intrude into the ambient at two distinct levels of neutral buoyancy, as opposed to the classical description of gravity currents in stratified media as being either a pure underflow or interflow. The splitting behaviour is observed to be dependent on the Richardson number ( $$Ri_{\unicode[STIX]{x1D70C}}$$ ) of the gravity current, formulated as the ratio of the excess density and the ambient stratification. For low $$Ri_{\unicode[STIX]{x1D70C}}$$ , underflow is more dominant, while at higher $$Ri_{\unicode[STIX]{x1D70C}}$$ interflow is more dominant. As $$Ri_{\unicode[STIX]{x1D70C}}$$ increases, however, we find that the splitting behaviour eventually becomes independent of $$Ri_{\unicode[STIX]{x1D70C}}$$ . Additionally, we have also identified two different types of waves that form on the pycnocline in response to the intrusion of the gravity current. An underflow-dominated regime causes a pycnocline displacement where the speed of the wave crest is locked to the gravity current, whereas an interflow-dominated regime launches an internal wave that moves much faster than the gravity current head or interfacial intrusion.
more »
« less
Gravity currents from moving sources
Emerging technologies such as deep-sea mining and geoengineering pose fundamentally new questions regarding the dynamics of gravity currents. Such activities can continuously release dense sediment plumes from moving locations, thereafter propagating as gravity currents. Here, we present the results of idealized numerical simulations of this novel configuration, and investigate the propagation of a gravity current that results from a moving source of buoyancy, as a function of the ratio of source speed to buoyancy velocity. We show that above a certain value of this ratio, the flow enters a supercritical regime in which the source moves more rapidly than the generated current, resulting in a statistically steady state in the reference frame of the moving source. Once in the supercritical regime, the current goes through a second transition beyond which fluid in the head of the current moves approximately in the direction normal to the direction of motion of the source, and the time evolution of the front in the lateral direction is well described by an equivalent constant volume lock-release gravity current. We use our findings to gain insight into the propagation of sediment plumes released by deep-sea mining collector vehicles, and present proof-of-concept tow-tank laboratory experiments of a model deep-sea mining collector discharging dense dyed fluid in its wake. The experiments reveal the formation a wedge-shaped gravity current front which narrows as the ratio of collector-to-buoyancy velocity increases. The time-averaged front position shows good agreement with the results of the numerical model in the supercritical regime.
more »
« less
- Award ID(s):
- 2139277
- PAR ID:
- 10393467
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 924
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Fluid mechanics lies at the heart of many of the physical processes associated with the nascent deep-sea mining industry. The evolution and fate of sediment plumes that would be produced by seabed mining activities, which are central to the assessment of the environmental impact, are entirely determined by transport processes. These processes, which include advection, turbulent mixing, buoyancy, differential particle settling, and flocculation, operate at a multitude of spatiotemporal scales. A combination of historical and recent efforts that combine theory, numerical modeling, laboratory experiments, and field trials has yielded significant progress, including assessing the role of environmental and operational parameters in setting the extent of sediment plumes, but more fundamental and applied fluid mechanics research is needed before models can accurately predict commercial-scale scenarios. Furthermore, fluid mechanics underpins the design and operation of proposed mining technologies, for which there are currently no established best practices.more » « less
-
Abstract Large-amplitude internal solitary wave (ISW) shoaling, breaking, and run-up was tracked continuously by a dense and rapidly sampling array spanning depths from 500 m to shore near Dongsha Atoll in the South China Sea. Incident ISW amplitudes ranged between 78 and 146 m with propagation speeds between 1.40 and 2.38 m s−1. The ratio between wave amplitude and a critical amplitudeA0controlled breaking type and was related to wave speedcpand depth. Fissioning ISWs generated larger trailing elevation waves when the thermocline was deep and evolved into onshore propagating bores in depths near 100 m. Collapsing ISWs contained significant mixing and little upslope bore propagation. Bores contained significant onshore near-bottom kinetic and potential energy flux and significant offshore rundown and relaxation phases before and after the bore front passage, respectively. Bores on the shallow forereef drove bottom temperature variation in excess of 10°C and near-bottom cross-shore currents in excess of 0.4 m s−1. Bores decelerated upslope, consistent with upslope two-layer gravity current theory, though run-up extentXrwas offshore of the predicted gravity current location. Background stratification affected the bore run-up, withXrfarther offshore when the Korteweg–de Vries nonlinearity coefficientαwas negative. Fronts associated with the shoaling local internal tide, but equal in magnitude to the soliton-generated bores, were observed onshore of 20-m depth.more » « less
-
Solander Basin is characterized by subduction initiation at the Pacific‐Australia plate boundary, where high biological productivity is found at the northern edge of the Antarctic Circumpolar Current. Sedimentary architecture results from tectonic influences on accommodation space, sediment supply and ocean currents (via physiography); and climate influence on ocean currents and biological productivity. We present the first seismic‐stratigraphic analysis of Solander Basin based on high‐fold seismic‐reflection data (voyage MGL1803, SISIE). Solander Trough physiography formed by Eocene rifting, but basinal strata are mostly younger than ca. 17 Ma, when we infer Puysegur Ridge formed and sheltered Solander Basin from bottom currents, and mountain growth onshore increased sediment supply. Initial inversion on the Tauru Fault started at ca. 15 Ma, but reverse faulting from 12 to ca. 8 Ma on both the Tauru and Parara Faults was likely associated with reorganization and formation of the subduction thrust. The new seabed topography forced sediment pathways to become channelized at low points or antecedent gorges. Since 5 Ma, southern Puysegur Ridge and Fiordland mountains spread out towards the east and Solander Anticline grew in response to ongoing subduction and growth of a slab. Solander Basin had high sedimentation rates because (1) it is sheltered from bottom currents by Puysegur Ridge; and (2) it has a mountainous land area that supplies sediment to its northern end. Sedimentary architecture is asymmetric due to the Subtropical Front, which moves pelagic and hemi‐pelagic sediment, including dilute parts of gravity flows, eastward and accretes contourites to the shelf south of Stewart Island. Levees, scours, drifts and ridges of folded sediment characterize western Solander Basin, whereas hemi‐pelagic drape and secondary gravity flows are found east of the meandering axial Solander Channel. The high‐resolution record of climate and tectonics that Solander Basin contains may yield excellent sites for future scientific ocean drilling.more » « less
An official website of the United States government

