skip to main content

Title: Fish species richness is associated with the availability of landscape components across seasons in the Amazonian floodplain
Understanding environmental biodiversity drivers in freshwater systems continues to be a fundamental challenge in studies of their fish assemblages. The present study seeks to determine the degree to which landscape variables of Amazonian floodplain lakes influences fish assemblages in these environments. Fish species richness was estimated in 15 Amazonian floodplain lakes during the high and low-water phases and correlated with the areas of four inundated wetland classes: (i) open water, (ii) flooded herbaceous, (iii) flooded shrubs and (iv) flooded forest estimated in different radius circular areas around each sampling site. Data were analyzed using generalized linear models with fish species richness, total and guilds as the dependent variable and estimates of buffered landscape areas as explanatory variables. Our analysis identified the significance of landscape variables in determining the diversity of fish assemblages in Amazonian floodplain lakes. Spatial scale was also identified as a significant determinant of fish diversity as landscape effects were more evident at larger spatial scales. In particular, (1) total species richness was more sensitive to variations in the landscape areas than number of species within guilds and (2) the spatial extent of the wetland class of shrubs was consistently the more influential on fish species diversity.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We investigated how the taxonomic and functional structures of fish assemblages in the lower Amazon River floodplain responded to seasonal hydrological variations. Fishes were sampled in 440 aquatic habitats across a floodplain area of 17,673 km2during periods of high, receding, low and rising water. In addition, we recorded local environmental and landscape variables known to affect fish assemblages in floodplains. Redundancy analysis indicated that the taxonomic and functional structures of the fish assemblages were associated with water levels as well as local environmental, landscape and spatial variables. Our results showed that piscivores, planktivores and omnivores, as well as species with periodic and intermediate life history strategies, dominated the floodplain fish assemblages during periods of high‐water levels, whereas herbivores, invertivores and detritivores, as well as species of large body size with an equilibrium life history strategy, dominated the fish assemblages during periods of low‐water levels. Hydrology strongly influenced the structure of the fish assemblages in the Amazon floodplains. Our results indicate that the maintenance of seasonal hydrological dynamics in the basin is essential for the conservation of the regional fish diversity.

    more » « less
  2. Co-management is increasingly recognized as an effective model for managing fisheries, but little information exists on whether co-management can produce effects in species other than the target species. Fishery co-management in the tropics, where fish diversity is high and fish catches tend to be multispecies, is prone to produce assemblage-wide effects via alterations in the food web and changes in the overall capture of non-target species. Here, we assessed the effects of co-management for the species Arapaima sp. in relation to the structure and composition of the overall fish assemblage in floodplain lakes of the central Amazon Basin. These floodplain lakes are managed under a system of zoning of fishing activities. We used data from surveys of six floodplain lakes, including two lakes of each of three categories (lakes where fishing is prohibited, limited-access lakes, and open fishing lakes). The surveys were carried out before and after implementation of co-management, through gillnet fishing. The study area was the lower Solimões River, in the Amazon Basin, Brazil. Statistical models showed significant changes in the composition and structure of the fish assemblages after the implementation of the co-management, regardless of the zoning category. Through regulation of gear use and fishing practices, co-management allowed the colonization of species that had not been present before, which lead to higher richness and consequently increased fish sizes, abundance and biomass. Species of sedentary habits, migrants of short and medium distances, with commercial importance benefited the most from co-management. In the results presented in temporal scale, it was possible to observe a potential spillover effect being provided by the lakes where fishing is prohibited (no-take zones) and those of limited access that benefited those open to fishing. Thus, co-management had positive effects in the structure and composition of fish assemblages in all lakes, regardless of zoning category. 
    more » « less
  3. Abstract

    Amazonian waters are classified into three biogeochemical categories by dissolved nutrient content, sediment type, transparency, and acidity—all important predictors of autochthonous and allochthonous primary production (PP): (1) nutrient-poor, low-sediment, high-transparency, humic-stained, acidicblackwaters; (2) nutrient-poor, low-sediment, high-transparency, neutralclearwaters; (3) nutrient-rich, low-transparency, alluvial sediment-laden, neutralwhitewaters. The classification, first proposed by Alfred Russel Wallace in 1853, is well supported but its effects on fish are poorly understood. To investigate how Amazonian fish community composition and species richness are influenced by water type, we conducted quantitative year-round sampling of floodplain lake and river-margin habitats at a locality where all three water types co-occur. We sampled 22,398 fish from 310 species. Community composition was influenced more by water type than habitat. Whitewater communities were distinct from those of blackwaters and clearwaters, with community structure correlated strongly to conductivity and turbidity. Mean per-sampling event species richness and biomass were significantly higher in nutrient-rich whitewater floodplain lakes than in oligotrophic blackwater and clearwater river-floodplain systems and light-limited whitewater rivers. Our study provides novel insights into the influences of biogeochemical water type and ecosystem productivity on Earth’s most diverse aquatic vertebrate fauna and highlights the importance of including multiple water types in conservation planning.

    more » « less
  4. Abstract

    Understanding the distribution of biodiversity across the Earth is one of the most challenging questions in biology. Much research has been directed at explaining the species latitudinal pattern showing that communities are richer in tropical areas; however, despite decades of research, a general consensus has not yet emerged. In addition, global biodiversity patterns are being rapidly altered by human activities. Here, we aim to describe large‐scale patterns of species richness and diversity in terrestrial vertebrate scavenger (carrion‐consuming) assemblages, which provide key ecosystem functions and services. We used a worldwide dataset comprising 43 sites, where vertebrate scavenger assemblages were identified using 2,485 carcasses monitored between 1991 and 2018. First, we evaluated how scavenger richness (number of species) and diversity (Shannon diversity index) varied among seasons (cold vs. warm, wet vs. dry). Then, we studied the potential effects of human impact and a set of macroecological variables related to climatic conditions on the scavenger assemblages. Vertebrate scavenger richness ranged from species‐poor to species rich assemblages (4–30 species). Both scavenger richness and diversity also showed some seasonal variation. However, in general, climatic variables did not drive latitudinal patterns, as scavenger richness and diversity were not affected by temperature or rainfall. Rainfall seasonality slightly increased the number of species in the community, but its effect was weak. Instead, the human impact index included in our study was the main predictor of scavenger richness. Scavenger assemblages in highly human‐impacted areas sustained the smallest number of scavenger species, suggesting human activity may be overriding other macroecological processes in shaping scavenger communities. Our results highlight the effect of human impact at a global scale. As species‐rich assemblages tend to be more functional, we warn about possible reductions in ecosystem functions and the services provided by scavengers in human‐dominated landscapes in the Anthropocene.

    more » « less
  5. This data set is a derived data set based on fish catch data. Data are collected annually to enable us to track the fish assemblages of eleven primary lakes (Allequash, Big Muskellunge, Crystal, Sparkling, Trout, bog lakes 27-02 [Crystal Bog] and 12-15 [Trout Bog], Mendota, Monona, Wingra and Fish). Sampling on Lakes Monona, Wingra, and Fish started in 1995; sampling on other lakes started in 1981. Sampling is done at six littoral zone sites per lake with seine, minnow or crayfish traps, and fyke nets; a boat-mounted electrofishing system samples three littoral transects. Vertically hung gill nets are used to obtain two pelagic samples per lake from the deepest point. A trammel net samples across the thermocline at two sites per lake. In the bog lakes only fyke nets and minnow traps are deployed. Parameters measured include species-level identification and lengths for all fish caught, and weight and scale samples from a subset. Derived data sets include species richness, catch per unit effort, and size distribution by species, lake, and year. Species richness for a lake is the number of fish species caught in that lake during the annual fish sampling. Hybrids captured are only included in the richness value if neither of the two hybridized species are caught in the lake that year. Fish identified only to genus or higher taxonomic level are not included if any fish identified to species within that genus or higher taxonomic level are caught. E.g., Unidentified Chub would be only included in the richness value if no other chub is caught in that lake that year. Sampling Frequency: annually. Number of sites: 11 Notes: Beach seining was discontinued after 2019. 2020 data does not exist due to insufficient sampling. In 2021, sampling in Fish Lake was suspended due to significant lake level changes. Data is missing for the two bogs in 2022. Please consult NTL's website for information on experimental lake manipulations and the DNR's website for management activities 
    more » « less