Fossil groundwaters make up a substantial fraction of the Earth's fresh water and are being targeted for water supply wells at increasing rates. These groundwaters were recharged more than 12,000 years ago, often in climate conditions that were much different from those of today. Because of the long renewal times involved, fossil groundwaters have often been classified as nonrenewable. However, groundwater ages provide little insight into how water levels and fluxes will change as the result of pumping. The relationship between groundwater ages and these outcome-based metrics of renewability is not straightforward. Therefore, whether a groundwater is fossil or not may have little to do with its renewability. The hydraulic response of an aquifer system to pumping is not strongly related to groundwater age. The use of both modern and fossil groundwater can be unsustainable. 
                        more » 
                        « less   
                    
                            
                            Modern groundwater reaches deeper depths in heavily pumped aquifer systems
                        
                    
    
            Abstract Deep groundwater is an important source of drinking water, and can be preferable to shallower groundwaters where they are polluted by surface-borne contaminants. Surface-borne contaminants are disproportionately common in ‘modern’ groundwaters that are made up of precipitation that fell since the ~1950s. Some local-scale studies have suggested that groundwater pumping can draw modern groundwater downward and potentially pollute deep aquifers, but the prevalence of such pumping-induced downwelling at continental scale is not known. Here we analyse thousands of US groundwater tritium measurements to show that modern groundwater tends to reach deeper depths in heavily pumped aquifer systems. These findings imply that groundwater pumping can draw mobile surface-borne pollutants to deeper depths than they would reach in the absence of pumping. We conclude that intensive groundwater pumping can draw recently recharged groundwater deeper into aquifer systems, potentially endangering deep groundwater quality. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2048227
- PAR ID:
- 10393535
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Non-perennial rivers and streams make up over half the global river network and are becoming more widespread. Transitions from perennial to non-perennial flow are a threshold-type change that can lead to alternative stable states in aquatic ecosystems, but it is unknown whether streamflow itself is stable in either wet (flowing) or dry (no-flow) conditions. Here, we investigated drivers and feedbacks associated with regime shifts between wet and dry conditions in an intermittent reach of the Arkansas River (USA) over the past 23 years. Multiple lines of evidence suggested that these regimes represent alternative stable states, including (a) significant jumps in discharge time series that were not accompanied by jumps in flow drivers such as precipitation and groundwater pumping; (b) a multi-modal state distribution with 92% of months experiencing no-flow conditions for <10% or >90% of days, despite unimodal distributions of precipitation and pumping; and (c) a hysteretic relationship between climate and flow state. Groundwater levels appear to be the primary control over the hydrological regime, as groundwater levels in the alluvial aquifer were higher than the stream stage during wet regimes and lower than the streambed during dry regimes. Groundwater level variation, in turn, was driven by processes occurring at both the regional scale (surface water inflows from upstream, groundwater pumping) and the reach scale (stream–aquifer exchange, diffuse recharge through the soil column). Historical regime shifts were associated with diverse pressures including network disconnection caused by upstream water use, increased flow stability potentially associated with reservoir operations, and anomalous wet and dry climate conditions. In sum, stabilizing feedbacks among upstream inflows, stream–aquifer interactions, climate, vegetation, and pumping appear to create alternative wet and dry stable states at this site. These stabilizing feedbacks suggest that widespread observed shifts from perennial to non-perennial flow will be difficult to reverse.more » « less
- 
            Abstract Managing fragile island freshwater resources requires identifying pumping strategies that trade off the financial cost of groundwater supply against controlling the seawater intrusion (SWI) associated with aquifer pumping. In this work, these tradeoffs are investigated through a sensitivity analysis conducted in the context of an optimization formulation of the groundwater management problem, which aims at minimizing the groundwater supply operation cost associated with groundwater pumping and desalination treatment, subject to constraints on SWI control, as quantified by the water table drawdown over the well (∆s), the reduction in freshwater volume (∆FV) in the aquifer, or the salt mass increase (∆SM) in the aquifer. This study focuses on a simplified two‐dimensional model of the San Salvador Island aquifer (Bahamas). Pumping strategies are characterized by the distance of the pumping system from the shoreline (WL), the abstraction screen depth (D) and overall pumping rate (Q), constituting the decision variables of the optimization problem. We investigate the impacts of pumping strategies on the operation cost, ∆s, ∆FVand ∆SM. Findings indicate increasingDor decreasingWLreduces ∆s, ∆FVand ∆SM, thus preserving the aquifer hydrogeologic stability, but also leads to extracting saltier groundwater, thus increasing the water treatment requirements, which have a strong impact on the overall groundwater supply cost. From a financial perspective, groundwater abstraction near the island center and at shallow depths seems the most convenient strategy. However, the analysis of the optimization constraints reveals that strategies where the pumping system approaches the island center tend to cause more severe SWI, highlighting the need to trade off groundwater supply cost against SWI control.more » « less
- 
            Abstract Many irrigated agricultural areas seek to prolong the lifetime of their groundwater resources by reducing pumping. However, it is unclear how lagged responses, such as reduced groundwater recharge caused by more efficient irrigation, may impact the long‐term effectiveness of conservation initiatives. Here, we use a variably saturated, simplified surrogate groundwater model to: (a) analyze aquifer responses to pumping reductions, (b) quantify time lags between reductions and groundwater level responses, and (c) identify the physical controls on lagged responses. We explore a range of plausible model parameters for an area of the High Plains aquifer (USA) where stakeholder‐driven conservation has slowed groundwater depletion. We identify two types of lagged responses that reduce the long‐term effectiveness of groundwater conservation, recharge‐dominated and lateral‐flow‐dominated, with vertical hydraulic conductivity (KZ) the major controlling variable. When highKZallows percolation to reach the aquifer, more efficient irrigation reduces groundwater recharge. By contrast, when lowKZimpedes vertical flow, short term changes in recharge are negligible, but pumping reductions alter the lateral flow between the groundwater conservation area and the surrounding regions (lateral‐flow‐dominated response). For the modeled area, we found that a pumping reduction of 30% resulted in median usable lifetime extensions of 20 or 25 years, depending on the dominant lagged response mechanism (recharge‐ vs. lateral‐flow‐dominated). These estimates are far shorter than estimates that do not account for lagged responses. Results indicate that conservation‐based pumping reductions can extend aquifer lifetimes, but lagged responses can create a sizable difference between the initially perceived and actual long‐term effectiveness.more » « less
- 
            The Denver Basin Aquifer System (DBAS) is an important groundwater resource for Front Range communities and is currently experiencing increasing demand as populations grow and surface water supplies remain limited. It is necessary to better constrain aquifer recharge mechanisms to enable sustainable use of this resource. In other sedimentary basin aquifer systems, mountain front recharge has been shown to be a significant contributor to local basin groundwater recharge. In the DBAS, inputs from the mountain block are poorly understood, and previous numerical models have treated large segments of the mountain-front boundary as impermeable. However, there exist potential connections between the mountain block and the DBAS, either by direct contact of permeable units, which would facilitate underflow recharge into the basin, or by surface water infiltration to the aquifer units where they outcrop near the mountain front. To observe spatial and temporal relationships between mountain block water and DBAS water, we use water stable isotopes and characterize the d2H and d18O of monthly precipitation, seasonal surface waters, and groundwaters in and around the Front Range and Denver Basin. The goal of this study is to determine if differences in the isotopic composition of waters across the Front Range permit the use of d18O and d2H as tracers of water flow between Front Range streams and groundwater and the DBAS. We analyzed the unique signature of mountain-block water to compare with DBAS water stable isotope data collected from Castle Rock Water municipal wells. Stable isotope ratios varied spatially and temporally, with the greatest temporal variance observed in precipitation. Streams showed great spatial variance, and less significant seasonal variance between the three seasonal sampling events conducted. Groundwaters showed very little temporal variance but had great spatial variance both between the aquifer units of the DBAS and between different locations within the mountain block crystalline aquifer. The lowest d2H and d18O ratios were measured in winter precipitation, winter streams, and groundwater samples collected from the high-elevation Front Range. Samples of DBAS groundwaters with the lowest d2H and d18O ratios indicate potential hydrogeologic connection to the mountain block. Interpreted mixing lines on a d-excess versus d18O plot support the potential DBAS-mountain block connection. The deepest aquifer units of the DBAS (Arapahoe and Laramie-Fox Hills) show the least relationship with meteoric or surface waters on both a d2H and d18O plot and the d-excess versus d18O plot and have higher d18O values than would be predicted based on their previously measured recharge ages and paleoclimate data from the region. Characterizing the spatial and temporal variations in water stable isotope signatures of the Front Range and DBAS region enhances understanding of the region’s hydrology and hydrogeology. Additionally, these results help to better inform models of aquifer recharge and promote sustainable use of the DBAS resource.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    