skip to main content


Title: Utilizing Toray Paper as a Metal‐Free, High Surface Area Electrode for Photosystem I–Driven Mediated Electron Transfer
  more » « less
Award ID(s):
1852157
NSF-PAR ID:
10393586
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Energy Technology
Volume:
11
Issue:
4
ISSN:
2194-4288
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Two-dimensional (2D) ternary materials recently generated interest in optoelectronics and energy-related applications, alongside their binary counterparts. To date, only a few naturally occurring layered 2D ternary materials have been explored. The plethora of benefits owed to reduced dimensionality prompted exploration of expanding non-layered ternary chalcogenides into the 2D realm. This work presents a templating method that uses 2D transition metal dichalcogenides as initiators to be converted into the corresponding ternary chalcogenide upon addition of copper, via a solution-phase synthesis, conducted in high boiling point solvents. The process starts with preparation of VSe2nanosheets, which are next converted into Cu3VSe4sulvanite nanosheets (NSs) which retain the 2D geometry while presenting an X-ray diffraction pattern identical with the one for the bulk Cu3VSe4. Both the scanning electron microscopy and transmission microscopy electron microscopy show the presence of quasi-2D morphology. Recent studies of the sulfur-containing sulvanite Cu3VS4highlight the presence of an intermediate bandgap, associated with enhanced photovoltaic (PV) performance. The Cu3VSe4nanosheets reported herein exhibit multiple UV–Vis absorption peaks, related to the intermediate bandgaps similar to Cu3VS4and Cu3VSe4nanocrystals. To test the potential of Cu3VSe4NSs as an absorber for solar photovoltaic devices, Cu3VSe4NSs thin-films deposited on FTO were subjected to photoelectrochemical testing, showing p-type behavior and stable photocurrents of up to ~ 0.036 mA/cm2. The photocurrent shows a ninefold increase in comparison to reported performance of Cu3VSe4nanocrystals. This proves that quasi-2D sulvanite nanosheets are amenable to thin-film deposition and could show superior PV performance in comparison to nanocrystal thin-films. The obtained electrical impedance spectroscopy signal of the Cu3VSeNSs-FTO based electrochemical cell fits an equivalent circuit with the circuit elements of solution resistance (Rs), charge-transfer resistance (Rct), double-layer capacitance (Cdl), and Warburg impedance (W). The estimated charge transfer resistance value of 300 Ω cm2obtained from the Nyquist plot provides an insight into the rate of charge transfer on the electrode/electrolyte interface.

     
    more » « less
  2. Poor electrochemical communication between biocatalysts and electrodes is a ubiquitous limitation to bioelectrocatalysis efficiency. An extensive library of polymers has been developed to modify biocatalyst-electrode interfaces to alleviate this limitation. As such, conducting redox polymers (CRPs) are a versatile tool with high structural and functional tunability. While charge transport in CRPs is well characterized, the understanding of charge transport mechanisms facilitated by CRPs within decisively complex photobioelectrocatalytic systems remains very limited. This study is a comprehensive analysis that dissects the complex kinetics of photobioelectrodes into fundamental blocks based on rational assumptions, providing a mechanistic overview of charge transfer during photobioelectrocatalysis. We quantitatively compare two biohybrids of metal-free unbranched CRP (polydihydroxy aniline) and photobiocatalyst (intact chloroplasts), formed utilizing two deposition strategies ( “mixed” and “layered” depositions). The superior photobioelectrocatalytic performance of the “ layered” biohybrid compared to the “ mixed” counterpart is justified in terms of rate ( D app ), thermodynamic and kinetic barriers (H ≠ , E a ), frequency of molecular collisions ( D 0 ) during electron transport across depositions, and rate and resistance to heterogeneous electron transfer ( k 0 , R CT ). Our results indicate that the primary electron transfer mechanism across the biohybrids, constituting the unbranched CRP, is thermally activated intra- and inter-molecular electron hopping, as opposed to a non-thermally activated polaron transfer model typical for branched CRP- or conducting polymer (CP)-containing biohybrids in literature. This work underscores the significance of subtle interplay between CRP structure and deposition strategy in tuning the polymer-catalyst interfaces, and the branched/unbranched structural classification of CRPs in the bioelectrocatalysis context. 
    more » « less
  3. Abstract

    Electrochemical reduction of carbon dioxide (CO2) typically suffers from low selectivity and poor reaction rates that necessitate high overpotentials, which impede its possible application for CO2capture, sequestration, or carbon‐based fuel production. New strategies to address these issues include the utilization of photoexcited charge carriers to overcome activation barriers for reactions that produce desirable products. This study demonstrates surface‐plasmon‐enhanced photoelectrochemical reduction of CO2and nitrate (NO3) on silver nanostructured electrodes. The observed photocurrent likely originates from a resonant charge transfer between the photogenerated plasmonic hot electrons and the lowest unoccupied molecular orbital (MO) acceptor energy levels of adsorbed CO2, NO3, or their reductive intermediates. The observed differences in the resonant effects at the Ag electrode with respect to electrode potential and photon energy for CO2versus NO3reduction suggest that plasmonic hot‐carriers interact selectively with specific MO acceptor energy levels of adsorbed surface species such as CO2, NO3, or their reductive intermediates. This unique plasmon‐assisted charge generation and transfer mechanism can be used to increase yield, efficiency, and selectivity of various photoelectrochemical processes.

     
    more » « less
  4.  
    more » « less
  5.  
    more » « less