skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Community Monitoring of Natural Resource Systems and the Environment
Community monitoring can track environmental phenomena, resource use, and natural resource management processes of concern to community mem- bers. It can also contribute to planning and decision-making and empower community members in resource management. While community moni- toring that addresses the environmental crisis is growing, it also gathers data on other global challenges: climate change, social welfare, and health. Some environmental community monitoring programs are challenged by limited collective action and community participation, insufficient state re- sponsiveness to data and proposals, and lack of sustainability over time. Addi- tionally, community members monitoring the environment are increasingly harassed and sometimes killed. Community monitoring is more effective with improved data collection, improved data management and sharing, and stronger efforts to meet community information needs, enable conflict resolution, and strengthen self-determination. Other promising areas for development are further incorporating governance issues, embracing integrated approaches at the community level, and establishing stronger links to national and global frameworks.  more » « less
Award ID(s):
2032423
PAR ID:
10393641
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Annual review of environment and resources
Volume:
46
ISSN:
1543-5938
Page Range / eLocation ID:
637-70
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Community monitoring can track environmental phenomena, resource use, and natural resource management processes of concern to community members. It can also contribute to planning and decision-making and empower community members in resource management. While community monitoring that addresses the environmental crisis is growing, it also gathers data on other global challenges: climate change, social welfare, and health. Some environmental community monitoring programs are challenged by limited collective action and community participation, insufficient state responsiveness to data and proposals, and lack of sustainability over time. Additionally, community members monitoring the environment are increasingly harassed and sometimes killed. Community monitoring is more effective with improved data collection, improved data management and sharing, andstronger efforts to meet community information needs, enable conflict resolution, and strengthen self-determination. Other promising areas for development are further incorporating governance issues, embracing integrated approaches at the community level, and establishing stronger links to national and global frameworks. 
    more » « less
  2. null (Ed.)
    Abstract Effective responses to rapid environmental change rely on observations to inform planning and decision-making. Reviewing literature from 124 programs across the globe and analyzing survey data for 30 Arctic community-based monitoring programs, we compare top-down, large-scale program driven approaches with bottom-up approaches initiated and steered at the community level. Connecting these two approaches and linking to Indigenous and local knowledge yields benefits including improved information products and enhanced observing program efficiency and sustainability. We identify core principles central to such improved links: matching observing program aims, scales, and ability to act on information; matching observing program and community priorities; fostering compatibility in observing methodology and data management; respect of Indigenous intellectual property rights and the implementation of free, prior, and informed consent; creating sufficient organizational support structures; and ensuring sustained community members’ commitment. Interventions to overcome challenges in adhering to these principles are discussed. 
    more » « less
  3. Abstract Community science, which engages students and the public in data collection and scientific inquiry, is often integrated into conservation and long-term monitoring efforts. However, it has the potential to also introduce the public to, and be useful for, sensory ecology and other fields of study. Here we describe a community science project that exposes participants to animal behavior and sensory ecology using the rich butterfly community of Northwest Arkansas, United States. Butterflies use visual signals to communicate and to attract mates. Brighter colors can produce stronger signals for mate attraction but can also unintentionally attract negative attention from predators. Environmental conditions such as weather can affect visual signaling as well, by influencing the wavelengths of light available and subsequent signal detection. However, we do not know whether the signals butterflies present correlate broadly with how they behave. In this study, we collaborated with hundreds of students and community members at the University of Arkansas (UARK) and the Botanical Gardens of the Ozarks (BGO) for over 3.5 years to examine relationships among wing pattern, weather, time of day, behavior, and flower choice. We found that both weather and wing color influenced general butterfly behavior. Butterflies were seen feeding more on cloudy days than on sunny or partly cloudy days. Brown butterflies fed or sat more often, while white butterflies flew more often relative to other butterfly colors. We also found that there was an interaction between the effects of weather and wing color on butterfly behavior. Furthermore, butterfly color predicted the choice of flower colors that butterflies visited, though this effect was influenced by the observer group (UARK student or BGO participant). These results suggest that flower choice may be associated with butterfly wing pattern, and that different environmental conditions may influence butterfly behavior in wing-pattern–specific ways. They also illustrate one way that public involvement in behavioral studies can facilitate the identification of coarse-scale, community-wide behavioral patterns, and lay the groundwork for future studies of sensory niches. 
    more » « less
  4. Environmental conservation organizations routinely monitor news content on conservation in protected areas to maintain situational awareness of developments that can have an environmental impact. Existing automated media monitoring systems require large amounts of data labeled by domain experts, which is only feasible at scale for high-resource languages like English. However, such tools are most needed in the global south where the news of interest is mainly in local low-resource languages, and far fewer experts are available to annotate datasets on a sustainable basis. In this paper, we propose NewsSerow, a method to automatically recognize environmental conservation content in low-resource languages. NewsSerow is a pipeline of summarization, in-context few-shot classification, and self-reflection using large language models (LLMs). Using at most 10 demonstration example news articles in Nepali, NewsSerow significantly outperforms other few-shot methods and can achieve comparable performance with models fully fine-tuned using thousands of examples. With NewsSerow, Organization X has been able to deploy the media monitoring tool in Nepal, significantly reducing their operational burden, and ensuring that AI tools for conservation actually reach the communities that need them the most. NewsSerow has also been deployed for countries with other languages like Colombia. 
    more » « less
  5. The Arctic environment is experiencing profound and rapid changes that will have far-reaching implications for resilient and sustainable development at the local and global levels. To achieve sustainable Arctic futures, it is critical to equip policymakers and global and regional stake- and rights-holders with knowledge and data regarding the ongoing changes in the Arctic environment. Community monitoring is an important source of environmental data in the Arctic but this research argues that community-generated data are under-utilized in the literature. A key challenge to leveraging community-based Arctic environmental monitoring is that it often takes the form of large, unstructured data consisting of field documents, media reports, and transcripts of oral histories. In this study, we integrated two computational approaches—topic modeling and network analysis—to identify environmental changes and their implications for resilience and sustainability in the Arctic. Using data from community monitoring reports of unusual environmental events in the Arctic that span a decade, we identified clusters of environmental challenges: permafrost thawing, infrastructure degradation, animal populations, and fluctuations in energy supply, among others. Leveraging visualization and analytical techniques from network science, we further identified the evolution of environmental challenges over time and contributing factors to the interconnections between these challenges. The study concludes by discussing practical and methodological contributions to Arctic resiliency and sustainability. 
    more » « less