We propose a semiparametric Bayesian methodology for estimating the average treatment effect (ATE) within the potential outcomes framework using observational data with high-dimensional nuisance parameters. Our method introduces a Bayesian debiasing procedure that corrects for bias arising from nuisance estimation and employs a targeted modeling strategy based on summary statistics rather than the full data. These summary statistics are identified in a debiased manner, enabling the estimation of nuisance bias via weighted observables and facilitating hierarchical learning of the ATE. By combining debiasing with sample splitting, our approach separates nuisance estimation from inference on the target parameter, reducing sensitivity to nuisance model specification. We establish that, under mild conditions, the marginal posterior for the ATE satisfies a Bernstein-von Mises theorem when both nuisance models are correctly specified and remains consistent and robust when only one is correct, achieving Bayesian double robustness. This ensures asymptotic efficiency and frequentist validity. Extensive simulations confirm the theoretical results, demonstrating accurate point estimation and credible intervals with nominal coverage, even in high-dimensional settings. The proposed framework can also be extended to other causal estimands, and its key principles offer a general foundation for advancing Bayesian semiparametric inference more broadly.
more »
« less
Covariate adjustment in multiarmed, possibly factorial experiments
Abstract Randomized experiments are the gold standard for causal inference and enable unbiased estimation of treatment effects. Regression adjustment provides a convenient way to incorporate covariate information for additional efficiency. This article provides a unified account of its utility for improving estimation efficiency in multiarmed experiments. We start with the commonly used additive and fully interacted models for regression adjustment in estimating average treatment effects (ATE), and clarify the trade-offs between the resulting ordinary least squares (OLS) estimators in terms of finite sample performance and asymptotic efficiency. We then move on to regression adjustment based on restricted least squares (RLS), and establish for the first time its properties for inferring ATE from the design-based perspective. The resulting inference has multiple guarantees. First, it is asymptotically efficient when the restriction is correctly specified. Second, it remains consistent as long as the restriction on the coefficients of the treatment indicators, if any, is correctly specified and separate from that on the coefficients of the treatment-covariate interactions. Third, it can have better finite sample performance than the unrestricted counterpart even when the restriction is moderately misspecified. It is thus our recommendation when the OLS fit of the fully interacted regression risks large finite sample variability in case of many covariates, many treatments, yet a moderate sample size. In addition, the newly established theory of RLS also provides a unified way of studying OLS-based inference from general regression specifications. As an illustration, we demonstrate its value for studying OLS-based regression adjustment in factorial experiments. Importantly, although we analyse inferential procedures that are motivated by OLS, we do not invoke any assumptions required by the underlying linear models.
more »
« less
- Award ID(s):
- 1945136
- PAR ID:
- 10393773
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Journal of the Royal Statistical Society Series B: Statistical Methodology
- Volume:
- 85
- Issue:
- 1
- ISSN:
- 1369-7412
- Page Range / eLocation ID:
- p. 1-23
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents finite‐sample efficiency bounds for the core econometric problem of estimation of linear regression coefficients. We show that the classical Gauss–Markov theorem can be restated omitting the unnatural restriction to linear estimators, without adding any extra conditions. Our results are lower bounds on the variances of unbiased estimators. These lower bounds correspond to the variances of the the least squares estimator and the generalized least squares estimator, depending on the assumption on the error covariances. These results show that we can drop the label “linear estimator” from the pedagogy of the Gauss–Markov theorem. Instead of referring to these estimators as BLUE, they can legitimately be called BUE (best unbiased estimators).more » « less
-
In this article, we introduce the packagebinsreg, which implements the binscatter methods developed by Cattaneo et al. (2024a, arXiv:2407.15276 [stat.EM]; 2024b,American Economic Review114: 1488–1514). The package comprises seven commands:binsreg, binslogit, binsprobit, binsqreg, binstest binspwc, andbinsregselect. The first four commands implement binscatter plotting, point estimation, and uncertainty quantification (confidence intervals and confidence bands) for least-squares linear binscatter regression (binsreg) and for nonlinear binscatter regression (binslogitfor logit regression,binsprobitfor. probit regression, andbinsqregfor quantile regression). The next two commands focus on pointwise and uniform inference:binstestimplements hypothesis testing procedures for parametric specifications and for nonparametric shape restrictions of the unknown regression function, whilebinspwcimplements multigroup pairwise statistical comparisons. The last command,binsregselect, implements. data-driven number-of-bins selectors. The commands offer binned scatterplots and allow for covariate adjustment, weighting, clustering, and multisample analysis, which is useful when studying treatment-effect heterogeneity in randomizec and observational studies, among many other features.more » « less
-
Summary In two influential contributions, Rosenbaum (2005, 2020a) advocated for using the distances between componentwise ranks, instead of the original data values, to measure covariate similarity when constructing matching estimators of average treatment effects. While the intuitive benefits of using covariate ranks for matching estimation are apparent, there is no theoretical understanding of such procedures in the literature. We fill this gap by demonstrating that Rosenbaum’s rank-based matching estimator, when coupled with a regression adjustment, enjoys the properties of double robustness and semiparametric efficiency without the need to enforce restrictive covariate moment assumptions. Our theoretical findings further emphasize the statistical virtues of employing ranks for estimation and inference, more broadly aligning with the insights put forth by Peter Bickel in his 2004 Rietz lecture.more » « less
-
Abstract We provide a novel characterization of augmented balancing weights, also known as automatic debiased machine learning. These popular doubly robust estimators combine outcome modelling with balancing weights—weights that achieve covariate balance directly instead of estimating and inverting the propensity score. When the outcome and weighting models are both linear in some (possibly infinite) basis, we show that the augmented estimator is equivalent to a single linear model with coefficients that combine those of the original outcome model with those from unpenalized ordinary least-squares (OLS). Under certain choices of regularization parameters, the augmented estimator in fact collapses to the OLS estimator alone. We then extend these results to specific outcome and weighting models. We first show that the augmented estimator that uses (kernel) ridge regression for both outcome and weighting models is equivalent to a single, undersmoothed (kernel) ridge regression—implying a novel analysis of undersmoothing. When the weighting model is instead lasso-penalized, we demonstrate a familiar ‘double selection’ property. Our framework opens the black box on this increasingly popular class of estimators, bridges the gap between existing results on the semiparametric efficiency of undersmoothed and doubly robust estimators, and provides new insights into the performance of augmented balancing weights.more » « less
An official website of the United States government
