Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Although the existing causal inference literature focuses on the forward-looking perspective by estimating effects of causes, the backward-looking perspective can provide insights into causes of effects. In backward-looking causal inference, the probability of necessity measures the probability that a certain event is caused by the treatment given the observed treatment and outcome. Most existing results focus on binary outcomes. Motivated by applications with ordinal outcomes, we propose a general definition of the probability of necessity. However, identifying the probability of necessity is challenging because it involves the joint distribution of the potential outcomes. We propose a novel assumption of monotonic incremental treatment effect to identify the probability of necessity with ordinal outcomes. We also discuss the testable implications of this key identification assumption. When it fails, we derive explicit formulas of the sharp large-sample bounds on the probability of necessity.more » « lessFree, publicly-accessible full text available July 9, 2026
- 
            Abstract Post-treatment variables often complicate causal inference. They appear in many scientific problems, including non-compliance, truncation by death, mediation, and surrogate endpoint evaluation. Principal stratification is a strategy to address these challenges by adjusting for the potential values of the post-treatment variables, defined as the principal strata. It allows for characterizing treatment effect heterogeneity across principal strata and unveiling the mechanism of the treatment’s impact on the outcome related to post-treatment variables. However, the existing literature has primarily focused on binary post-treatment variables, leaving the case with continuous post-treatment variables largely unexplored. This gap persists due to the complexity of infinitely many principal strata, which present challenges to both the identification and estimation of causal effects. We fill this gap by providing nonparametric identification and semiparametric estimation theory for principal stratification with continuous post-treatment variables. We propose to use working models to approximate the underlying causal effect surfaces and derive the efficient influence functions of the corresponding model parameters. Based on the theory, we construct doubly robust estimators and implement them in the R package continuousPCE.more » « less
- 
            Abstract Rejective sampling improves design and estimation efficiency of single-phase sampling when auxiliary information in a finite population is available. When such auxiliary information is unavailable, we propose to use two-phase rejective sampling (TPRS), which involves measuring auxiliary variables for the sample of units in the first phase, followed by the implementation of rejective sampling for the outcome in the second phase. We explore the asymptotic design properties of double expansion and regression estimators under TPRS. We show that TPRS enhances the efficiency of the double-expansion estimator, rendering it comparable to a regression estimator. We further refine the design to accommodate varying importance of covariates and extend it to multi-phase sampling. We start with the theory for the population mean and then extend the theory to parameters defined by general estimating equations. Our asymptotic results for TPRS immediately cover the existing single-phase rejective sampling, under which the asymptotic theory has not been fully established.more » « less
- 
            Abstract Linear regression is arguably the most widely used statistical method. With fixed regressors and correlated errors, the conventional wisdom is to modify the variance-covariance estimator to accommodate the known correlation structure of the errors. We depart from existing literature by showing that with random regressors, linear regression inference is robust to correlated errors with unknown correlation structure. The existing theoretical analyses for linear regression are no longer valid because even the asymptotic normality of the least squares coefficients breaks down in this regime. We first prove the asymptotic normality of the t statistics by establishing their Berry–Esseen bounds based on a novel probabilistic analysis of self-normalized statistics. We then study the local power of the corresponding t tests and show that, perhaps surprisingly, error correlation can even enhance power in the regime of weak signals. Overall, our results show that linear regression is applicable more broadly than the conventional theory suggests, and they further demonstrate the value of randomization for ensuring robustness of inference.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Summary Covariate adjustment can improve precision in analysing randomized experiments. With fully observed data, regression adjustment and propensity score weighting are asymptotically equivalent in improving efficiency over unadjusted analysis. When some outcomes are missing, we consider combining these two adjustment methods with the inverse probability of observation weighting for handling missing outcomes, and show that the equivalence between the two methods breaks down. Regression adjustment no longer ensures efficiency gain over unadjusted analysis unless the true outcome model is linear in covariates or the outcomes are missing completely at random. Propensity score weighting, in contrast, still guarantees efficiency over unadjusted analysis, and including more covariates in adjustment never harms asymptotic efficiency. Moreover, we establish the value of using partially observed covariates to secure additional efficiency by the missingness indicator method, which imputes all missing covariates by zero and uses the union of the completed covariates and corresponding missingness indicators as the new, fully observed covariates. Based on these findings, we recommend using regression adjustment in combination with the missingness indicator method if the linear outcome model or missing-completely-at-random assumption is plausible and using propensity score weighting with the missingness indicator method otherwise.more » « less
- 
            Summary Power analyses are an important aspect of experimental design, because they help determine how experiments are implemented in practice. It is common to specify a desired level of power and compute the sample size necessary to obtain that power. Such calculations are well known for completely randomized experiments, but there can be many benefits to using other experimental designs. For example, it has recently been established that rerandomization, where subjects are randomized until covariate balance is obtained, increases the precision of causal effect estimators. This work establishes the power of rerandomized treatment-control experiments, thereby allowing for sample size calculators. We find the surprising result that, while power is often greater under rerandomization than complete randomization, the opposite can occur for very small treatment effects. The reason is that inference under rerandomization can be relatively more conservative, in the sense that it can have a lower Type-I error at the same nominal significance level, and this additional conservativeness adversely affects power. This surprising result is due to treatment effect heterogeneity, a quantity often ignored in power analyses. We find that heterogeneity increases power for large effect sizes, but decreases power for small effect sizes.more » « less
- 
            Abstract Randomized experiments are the gold standard for causal inference and enable unbiased estimation of treatment effects. Regression adjustment provides a convenient way to incorporate covariate information for additional efficiency. This article provides a unified account of its utility for improving estimation efficiency in multiarmed experiments. We start with the commonly used additive and fully interacted models for regression adjustment in estimating average treatment effects (ATE), and clarify the trade-offs between the resulting ordinary least squares (OLS) estimators in terms of finite sample performance and asymptotic efficiency. We then move on to regression adjustment based on restricted least squares (RLS), and establish for the first time its properties for inferring ATE from the design-based perspective. The resulting inference has multiple guarantees. First, it is asymptotically efficient when the restriction is correctly specified. Second, it remains consistent as long as the restriction on the coefficients of the treatment indicators, if any, is correctly specified and separate from that on the coefficients of the treatment-covariate interactions. Third, it can have better finite sample performance than the unrestricted counterpart even when the restriction is moderately misspecified. It is thus our recommendation when the OLS fit of the fully interacted regression risks large finite sample variability in case of many covariates, many treatments, yet a moderate sample size. In addition, the newly established theory of RLS also provides a unified way of studying OLS-based inference from general regression specifications. As an illustration, we demonstrate its value for studying OLS-based regression adjustment in factorial experiments. Importantly, although we analyse inferential procedures that are motivated by OLS, we do not invoke any assumptions required by the underlying linear models.more » « less
- 
            Summary Complete randomization balances covariates on average, but covariate imbalance often exists in finite samples. Rerandomization can ensure covariate balance in the realized experiment by discarding the undesired treatment assignments. Many field experiments in public health and social sciences assign the treatment at the cluster level due to logistical constraints or policy considerations. Moreover, they are frequently combined with re-randomization in the design stage. We define cluster rerandomization as a cluster-randomized experiment compounded with rerandomization to balance covariates at the individual or cluster level. Existing asymptotic theory can only deal with rerandomization with treatments assigned at the individual level, leaving that for cluster rerandomization an open problem. To fill the gap, we provide a design-based theory for cluster rerandomization. Moreover, we compare two cluster rerandomization schemes that use prior information on the importance of the covariates: one based on the weighted Euclidean distance and the other based on the Mahalanobis distance with tiers of covariates. We demonstrate that the former dominates the latter with optimal weights and orthogonalized covariates. Last but not least, we discuss the role of covariate adjustment in the analysis stage, and recommend covariate-adjusted procedures that can be conveniently implemented by least squares with the associated robust standard errors.more » « less
- 
            Abstract Cluster-randomized experiments are widely used due to their logistical convenience and policy relevance. To analyse them properly, we must address the fact that the treatment is assigned at the cluster level instead of the individual level. Standard analytic strategies are regressions based on individual data, cluster averages and cluster totals, which differ when the cluster sizes vary. These methods are often motivated by models with strong and unverifiable assumptions, and the choice among them can be subjective. Without any outcome modelling assumption, we evaluate these regression estimators and the associated robust standard errors from the design-based perspective where only the treatment assignment itself is random and controlled by the experimenter. We demonstrate that regression based on cluster averages targets a weighted average treatment effect, regression based on individual data is suboptimal in terms of efficiency and regression based on cluster totals is consistent and more efficient with a large number of clusters. We highlight the critical role of covariates in improving estimation efficiency and illustrate the efficiency gain via both simulation studies and data analysis. The asymptotic analysis also reveals the efficiency-robustness trade-off by comparing the properties of various estimators using data at different levels with and without covariate adjustment. Moreover, we show that the robust standard errors are convenient approximations to the true asymptotic standard errors under the design-based perspective. Our theory holds even when the outcome models are misspecified, so it is model-assisted rather than model-based. We also extend the theory to a wider class of weighted average treatment effects.more » « less
- 
            Free, publicly-accessible full text available April 3, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
