skip to main content

Search for: All records

Award ID contains: 1945136

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 20, 2023
  2. Free, publicly-accessible full text available April 1, 2023
  3. Summary Factorial designs are widely used because of their ability to accommodate multiple factors simultaneously. Factor-based regression with main effects and some interactions is the dominant strategy for downstream analysis, delivering point estimators and standard errors simultaneously via one least-squares fit. Justification of these convenient estimators from the design-based perspective requires quantifying their sampling properties under the assignment mechanism while conditioning on the potential outcomes. To this end, we derive the sampling properties of the regression estimators under a wide range of specifications, and establish the appropriateness of the corresponding robust standard errors for Wald-type inference. The results help to clarify the causal interpretation of the coefficients in these factor-based regressions, and motivate the definition of general factorial effects to unify the definitions of factorial effects in various fields. We also quantify the bias-variance trade-off between the saturated and unsaturated regressions from the design-based perspective.