skip to main content


Title: Multiple opsins in a reef-building coral, Acropora millepora
Abstract

Opsins, light-sensitive G protein-coupled receptors, have been identified in corals but their properties are largely unknown. Here, we identified six opsin genes (acropsins 1–6) from a coral speciesAcropora millepora, including three novel opsins (acropsins 4–6), and successfully characterized the properties of four out of the six acropsins. Acropsins 1 and 6 exhibited light-dependent cAMP increases in cultured cells, suggesting that the acropsins could light-dependently activate Gs-type G protein like the box jellyfish opsin from the same opsin group. Spectral sensitivity curves having the maximum sensitivities at ~ 472 nm and ~ 476 nm were estimated for acropsins 1 and 6, respectively, based on the light wavelength-dependent cAMP increases in these opsins-expressing cells (heterologous action spectroscopy). Acropsin 2 belonging to the same group as acropsins 1 and 6 did not induce light-dependent cAMP or Ca2+changes. We then successfully estimated the acropsin 2 spectral sensitivity curve having its maximum value at ~ 471 nm with its chimera mutant which possessed the third cytoplasmic loop of the Gs-coupled jellyfish opsin. Acropsin 4 categorized as another group light-dependently induced intracellular Ca2+increases but not cAMP changes. Our results uncovered that theAcroporacoral possesses multiple opsins coupling two distinct cascades, cyclic nucleotide and Ca2+signaling light-dependently.

 
more » « less
NSF-PAR ID:
10393801
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
13
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Using molten‐salt synthetic techniques, NaNbO3(Space groupPbcm; No. 57) was prepared in high purity at a reaction time of 12 hours and a temperature of 900°C. All NaNbO3products were prepared from stoichiometric ratios of Nb2O5and Na2CO3together with the addition of a salt flux introduced at a 10:1 molar ratio of salt to NaNbO3, that is, using the Na2SO4, NaF, NaCl, and NaBr salts. A solid‐state synthesis was performed in the absence of a molten salt to serve as a control. The reaction products were all found to be phase pure through powder X‐ray diffraction, for example, with refined lattice constants ofa = 5.512(5) Å,b = 5.567(3) Å, andc = 15.516(8) Å from the Na2SO4salt reaction. The products were characterized using UV‐Vis diffuse reflectance spectroscopy to have a bandgap size of ~3.5 eV. The particles sizes were analyzed by scanning electron microscopy (SEM) and found to be dependent upon the flux type used, from ~<1 μm to >10 μm in length, with overall surface areas that could be varied from 0.66 m2/g (for NaF) to 1.55 m2/g (for NaBr). Cubic‐shaped particle morphologies were observed for the metal halide salts with the set of exposed (100)/(010)/(001) crystal facets, while a truncated octahedral morphology formed in the sodium sulfate salt reaction with predominantly the set of (110)/(101)/(011) crystal facets. The products were found to be photocatalytically active for hydrogen production under UV‐Vis irradiation, with the aid of a 1 wt% Pt surface cocatalyst. The platinized NaNbO3particles were suspended in an aqueous 20% methanol solution and irradiated by UV‐Vis light (λ > 230 nm). After 6 hours of irradiation, the average total hydrogen production varied with the particle morphologies and sizes, with 753 µmol for Na2SO4, 334 µmol for NaF, 290 µmol for NaCl, 81 µmol for NaBr, and 249 µmol for the solid‐state synthesized NaNbO3. These trends show a clear relationship to particle sizes, with smaller particles showing higher photocatalytic activity in the order of NaF > NaCl > NaBr. Furthermore, the particle morphologies obtained from the Na2SO4flux showed even higher photocatalytic activity, though having a relatively similar overall surface area, owing to the higher activity of the (110) crystal facets. The apparent quantum yield (100 mW/cm2,λ = 230 to 350 nm, pH = 7) was measured to be 3.7% for NaNbO3prepared using the NaF flux, but this was doubled to 6.8% when prepared using the Na2SO4flux. Thus, these results demonstrate the powerful utility of flux synthetic techniques to control particle sizes and to expose higher‐activity crystal facets to boost their photocatalytic activities for molecular hydrogen production.

     
    more » « less
  2. Knowledge of crustacean vision is lacking compared to the more well-studied vertebrates and insects. While crustacean visual systems are typically conserved morphologically, the molecular components (i.e. opsins) remain understudied. This review aims to characterize opsin diversity across crustacean lineages for an integrated view of visual system evolution. Using publicly available data from 95 species, we identified opsin sequences and classified them by clade. Our analysis produced 485 putative visual opsins and 141 non-visual opsins. The visual opsins were separated into six clades: long wavelength sensitive (LWS), middle wavelength sensitive (MWS) 1 and 2, short wavelength or ultraviolet sensitive (SWS/UVS) and a clade of thecostracan opsins, with multiple LWS and MWS opsin copies observed. The SWS/UVS opsins were relatively conserved in most species. The crustacean classes Cephalocarida, Remipedia and Hexanauplia exhibited reduced visual opsin diversity compared to others, with the malacostracan decapods having the highest opsin diversity. Non-visual opsins were identified from all investigated classes except Cephalocarida. Additionally, a novel clade of non-visual crustacean-specific, R-type opsins (Rc) was discovered. This review aims to provide a framework for future research on crustacean vision, with an emphasis on the need for more work in spectral characterization and molecular analysis. This article is part of the theme issue ‘Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods’. 
    more » « less
  3. Salmonids are ideal models as many species follow a distinct developmental program from demersal eggs and a large yolk sac to hatching at an advanced developmental stage. Further, these economically important teleosts inhabit both marine- and freshwaters and experience diverse light environments during their life histories. At a genome level, salmonids have undergone a salmonid-specific fourth whole genome duplication event (Ss4R) compared to other teleosts that are already more genetically diverse compared to many non-teleost vertebrates. Thus, salmonids display phenotypically plastic visual systems that appear to be closely related to their anadromous migration patterns. This is most likely due to a complex interplay between their larger, more gene-rich genomes and broad spectrally enriched habitats; however, the molecular basis and functional consequences for such diversity is not fully understood. This study used advances in genome sequencing to identify the repertoire and genome organization of visual opsin genes (those primarily expressed in retinal photoreceptors) from six different salmonids [Atlantic salmon ( Salmo salar ), brown trout ( Salmo trutta ), Chinook salmon ( Oncorhynchus tshawytcha ), coho salmon ( Oncorhynchus kisutch ), rainbow trout ( Oncorhynchus mykiss ), and sockeye salmon ( Oncorhynchus nerka )] compared to the northern pike ( Esox lucius ), a closely related non-salmonid species. Results identified multiple orthologues for all five visual opsin classes, except for presence of a single short-wavelength-sensitive-2 opsin gene. Several visual opsin genes were not retained after the Ss4R duplication event, which is consistent with the concept of salmonid rediploidization. Developmentally, transcriptomic analyzes of Atlantic salmon revealed differential expression within each opsin class, with two of the long-wavelength-sensitive opsins not being expressed before first feeding. Also, early opsin expression in the retina was located centrally, expanding dorsally and ventrally as eye development progressed, with rod opsin being the dominant visual opsin post-hatching. Modeling by spectral tuning analysis and atomistic molecular simulation, predicted the greatest variation in the spectral peak of absorbance to be within the Rh2 class, with a ∼40 nm difference in λ max values between the four medium-wavelength-sensitive photopigments. Overall, it appears that opsin duplication and expression, and their respective spectral tuning profiles, evolved to maximize specialist color vision throughout an anadromous lifecycle, with some visual opsin genes being lost to tailor marine-based vision. 
    more » « less
  4. Color vision has evolved multiple times in both vertebrates and invertebrates and is largely determined by the number and variation in spectral sensitivities of distinct opsin subclasses. However, because of the difficulty of expressing long-wavelength (LW) invertebrate opsins in vitro, our understanding of the molecular basis of functional shifts in opsin spectral sensitivities has been biased toward research primarily in vertebrates. This has restricted our ability to address whether invertebrate Gqprotein-coupled opsins function in a novel or convergent way compared to vertebrate Gtopsins. Here we develop a robust heterologous expression system to purify invertebrate rhodopsins, identify specific amino acid changes responsible for adaptive spectral tuning, and pinpoint how molecular variation in invertebrate opsins underlie wavelength sensitivity shifts that enhance visual perception. By combining functional and optophysiological approaches, we disentangle the relative contributions of lateral filtering pigments from red-shifted LW and blue short-wavelength opsins expressed in distinct photoreceptor cells of individual ommatidia. We use in situ hybridization to visualize six ommatidial classes in the compound eye of a lycaenid butterfly with a four-opsin visual system. We show experimentally that certain key tuning residues underlying green spectral shifts in blue opsin paralogs have evolved repeatedly among short-wavelength opsin lineages. Taken together, our results demonstrate the interplay between regulatory and adaptive evolution at multiple Gqopsin loci, as well as how coordinated spectral shifts in LW and blue opsins can act together to enhance insect spectral sensitivity at blue and red wavelengths for visual performance adaptation.

     
    more » « less
  5. Abstract

    In animals, opsins and cryptochromes are major protein families that transduce light signals when bound to light-absorbing chromophores. Opsins are involved in various light-dependent processes, like vision, and have been co-opted for light-independent sensory modalities. Cryptochromes are important photoreceptors in animals, generally regulating circadian rhythm, they belong to a larger protein family with photolyases, which repair UV-induced DNA damage. Mollusks are great animals to explore questions about light sensing as eyes have evolved multiple times across, and within, taxonomic classes. We used molluscan genome assemblies from 80 species to predict protein sequences and examine gene family evolution using phylogenetic approaches. We found extensive opsin family expansion and contraction, particularly in bivalve xenopsins and gastropod Go-opsins, while other opsins, like retinochrome, rarely duplicate. Bivalve and gastropod lineages exhibit fluctuations in opsin repertoire, with cephalopods having the fewest number of opsins and loss of at least 2 major opsin types. Interestingly, opsin expansions are not limited to eyed species, and the highest opsin content was seen in eyeless bivalves. The dynamic nature of opsin evolution is quite contrary to the general lack of diversification in mollusk cryptochromes, though some taxa, including cephalopods and terrestrial gastropods, have reduced repertoires of both protein families. We also found complete loss of opsins and cryptochromes in multiple, but not all, deep-sea species. These results help set the stage for connecting genomic changes, including opsin family expansion and contraction, with differences in environmental, and biological features across Mollusca.

     
    more » « less