skip to main content


Title: Coupled Sensor Configuration and Path-Planning in a Multimodal Threat Field
A coupled path-planning and sensor configuration method is proposed. The path-planning objective is to minimize exposure to an unknown, spatially-varying, and temporally static scalar field called the threat field. The threat field is modeled as a weighted sum of several scalar fields, each representing a mode of threat. A heterogeneous sensor network takes noisy measurements of the threat field. Each sensor in the network observes one or more threat modes within a circular field of view (FoV). The sensors are configurable, i.e., parameters such as location and size of field of view can be changed. The measurement noise is assumed to be normally distributed with zero mean and a variance that monotonically increases with the size of the FoV, emulating the FoV v/s resolution trade-off in most sensors. Gaussian Process regression is used to estimate the threat field from these measurements. The main innovation of this work is that sensor configuration is performed by maximizing a so-called task-driven information gain (TDIG) metric, which quantifies uncertainty reduction in the cost of the planned path. Because the TDIG does not have any convenient structural properties, a surrogate function called the self-adaptive mutual information (SAMI) is considered. Sensor configuration based on the TDIG or SAMI introduces coupling with path-planning in accordance with the dynamic data-driven application systems paradigm. The benefit of this approach is that near-optimal plans are found with a relatively small number of measurements. In comparison to decoupled path-planning and sensor configuration based on traditional information-driven metrics, the proposed CSCP method results in near-optimal plans with fewer measurements.  more » « less
Award ID(s):
2126818
NSF-PAR ID:
10393834
Author(s) / Creator(s):
;
Editor(s):
Blasch, Erik; Ravela, Sai
Date Published:
Journal Name:
Dynamic Data Driven Application Systems Conference DDDAS2022
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A coupled path-planning and sensor configuration method is proposed. The path-planning objective is to minimize exposure to an unknown spatially-varying scalar field, called the threat field, measured by a network of sensors. Gaussian Process regression is used to estimate the threat field from these measurements. Crucially, the sensors are configurable, i.e., parameters such as location and size of field of view can be changed. A main innovation of this work is that sensor configuration is performed by maximizing a so-called task-driven information gain (TDIG) metric, which quantifies uncertainty reduction in the cost of the planned path. For computational efficiency, a surrogate metric called the self-adaptive mutual information (SAMI) is introduced and shown to be submodular. The proposed method is shown to vastly outperform traditionally decoupled information-driven sensor configuration in terms of the number of measurements required to find near-optimal plans. 
    more » « less
  2. We present an adaptive fast-approximation for sensor configuration which finds near-optimal placements and sensor field of views (FoV). The fast-approximation, either via partition-based or density-based cluster analysis, adapts based on the relation between statistical uncertainty of the path plan and environmental uncertainty. The sensor configurations are performed over regions of interest which most directly influence the path-planning efforts. These regions of interest can include exploratory paths by sampling the probabilistic environment model. The path-planning efforts aim to decide upon a path which minimizes an agent’s exposure to threats in an unknown static environment. The noisy sensor network observations are used to construct a threat field estimate using Gaussian Process Regression each iteration with a stationary kernel and heteroscedastic gaussian likelihood. The optimization of a task-driven information gain determines optimal sensor configurations when maximized. The numerical performance of the direct optimization and the adaptive cluster analysis method is presented. Finally, we show that the cluster centers can be utilized as a dimensionality reduction technique for FoV optimization whereby we only optimize FoV radial coverage. 
    more » « less
  3. In this paper, a distributed cooperative filtering strategy for state estimation has been developed for mobile sensor networks in a spatial–temporal varying field modeled by the advection–diffusion equation. Sensors are organized into distributed cells that resemble a mesh grid covering a spatial area, and estimation of the field value and gradient information at each cell center is obtained by running a constrained cooperative Kalman filter while incorporating the sensor measurements and information from neighboring cells. Within each cell, the finite volume method is applied to discretize and approximate the advection–diffusion equation. These approximations build the weakly coupled relationships between neighboring cells and define the constraints that the cooperative Kalman filters are subjected to. With the estimated information, a gradient-based formation control law has been developed that enables the sensor network to adjust formation size by utilizing the estimated gradient information. Convergence analysis has been conducted for both the distributed constrained cooperative Kalman filter and the formation control. Simulation results with a 9-cell 12-sensor network validate the proposed distributed filtering method and control law. 
    more » « less
  4. Abstract

    Low‐power, open‐path gas sensors enable eddy covariance (EC) flux measurements in remote areas without line power. However, open‐path flux measurements are sensitive to fluctuations in air temperature, pressure, and humidity. Laser‐based, open‐path sensors with the needed sensitivity for trace gases like methane (CH4) and nitrous oxide (N2O) are impacted by additional spectroscopic effects. Corrections for these effects, especially those related to temperature fluctuations, often exceed the flux of gases, leading to large uncertainties in the associated fluxes. For example, the density and spectroscopic corrections arising from temperature fluctuations can be one or two orders of magnitude greater than background N2O fluxes. Consequently, measuring background fluxes with laser‐based, open‐path sensors is extremely challenging, particularly for N2O and gases with similar high‐precision requirements. We demonstrate a new laser‐based, open‐path N2O sensor and a general approach applicable to other gases that minimizes temperature‐related corrections for EC flux measurements. The method identifies absorption lines with spectroscopic effects in the opposite direction of density effects from temperature and, thus, density and spectroscopic effects nearly cancel one another. The new open‐path N2O sensor was tested at a corn (Zea maysL.) field in Southwestern Michigan, United States. The sensor had an optimal precision of 0.1 ppbv at 10 Hz and power consumption of 50 W. Field trials showed that temperature‐related corrections were 6% of density corrections, reducing EC random errors by 20‐fold compared to previously examined lines. Measured open‐path N2O EC fluxes showed excellent agreement with those made with static chambers (m = 1.0 ± 0.3;r2 = .96). More generally, we identified absorption lines for CO2and CH4 flux measurements that can reduce the temperature‐related corrections by 10–100 times compared to existing open‐path sensors. The proposed method provides a new direction for future open‐path sensors, facilitating the expansion of accurate EC flux measurements.

     
    more » « less
  5. Abstract

    The accelerated degradation test (ADT) is an efficient tool for assessing the lifetime information of highly reliable products. However, conducting an ADT is very expensive. Therefore, how to conduct a cost‐constrained ADT plan is a great challenging issue for reliability analysts. By taking the experimental cost into consideration, this paper proposes a semi‐analytical procedure to determine the total sample size, testing stress levels, the measurement frequencies, and the number of measurements (within a degradation path) globally under a class of exponential dispersion degradation models. The proposed method is also extended to determine the global planning of a three‐level compromise plan. The advantage of the proposed method not only provides better design insights for conducting an ADT plan, but also provides an efficient algorithm to obtain a cost‐constrained ADT plan, compared with conventional optimal plans by grid search algorithms.

     
    more » « less