This paper proposes cooperative Kalman filters for distributed mobile sensor networks where the mobile sensors are organized into cells that resemble a mesh grid to cover a spatial area. The mobile sensor networks are deployed to map an underlying spatial-temporal field modeled by the Poisson equation. After discretizing the Poisson equation with finite volume method, we found that the cooperative Kalman filters for the cells are subjected to a set of distributed constraints. The field value and gradient information at each cell center can be estimated by the constrained cooperative Kalman filter using measurements within each cell and information from neighboring cells. We also provide convergence analysis for the distributed constrained cooperative Kalman filter. Simulation results with a five cell network validates the proposed distributed filtering method.
more »
« less
Distributed cooperative Kalman filter constrained by advection–diffusion equation for mobile sensor networks
In this paper, a distributed cooperative filtering strategy for state estimation has been developed for mobile sensor networks in a spatial–temporal varying field modeled by the advection–diffusion equation. Sensors are organized into distributed cells that resemble a mesh grid covering a spatial area, and estimation of the field value and gradient information at each cell center is obtained by running a constrained cooperative Kalman filter while incorporating the sensor measurements and information from neighboring cells. Within each cell, the finite volume method is applied to discretize and approximate the advection–diffusion equation. These approximations build the weakly coupled relationships between neighboring cells and define the constraints that the cooperative Kalman filters are subjected to. With the estimated information, a gradient-based formation control law has been developed that enables the sensor network to adjust formation size by utilizing the estimated gradient information. Convergence analysis has been conducted for both the distributed constrained cooperative Kalman filter and the formation control. Simulation results with a 9-cell 12-sensor network validate the proposed distributed filtering method and control law.
more »
« less
- NSF-PAR ID:
- 10465803
- Date Published:
- Journal Name:
- Frontiers in Robotics and AI
- Volume:
- 10
- ISSN:
- 2296-9144
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This article presents an online parameter identification scheme for advection-diffusion processes using data collected by a mobile sensor network. The advection-diffusion equation is incorporated into the information dynamics associated with the trajectories of the mobile sensors. A constrained cooperative Kalman filter is developed to provide estimates of the field values and gradients along the trajectories of the mobile sensors so that the temporal variations in the field values can be estimated. This leads to a co-design scheme for state estimation and parameter identification for advection-diffusion processes that is different from comparable schemes using sensors installed at fixed spatial locations. Using state estimates from the constrained cooperative Kalman filter, a recursive least-square (RLS) algorithm is designed to estimate unknown model parameters of the advection-diffusion processes. Theoretical justifications are provided for the convergence of the proposed cooperative Kalman filter by deriving a set of sufficient conditions regarding the formation shape and the motion of the mobile sensor network. Simulation and experimental results show satisfactory performance and demonstrate the robustness of the algorithm under realistic uncertainties and disturbances.more » « less
-
In this paper, a constrained cooperative Kalman filter is developed to estimate field values and gradients along trajectories of mobile robots collecting measurements. We assume the underlying field is generated by a polynomial partial differential equation with unknown time-varying parameters. A long short-term memory (LSTM) based Kalman filter, is applied for the parameter estimation leveraging the updated state estimates from the constrained cooperative Kalman filter. Convergence for the constrained cooperative Kalman filter has been justified. Simulation results in a 2-dimensional field are provided to validate the proposed method.more » « less
-
Duality between estimation and optimal control is a problem of rich historical significance. The first duality principle appears in the seminal paper of Kalman-Bucy, where the problem of minimum variance estimation is shown to be dual to a linear quadratic (LQ) optimal control problem. Duality offers a constructive proof technique to derive the Kalman filter equation from the optimal control solution. This paper generalizes the classical duality result of Kalman-Bucy to the nonlinear filter: The state evolves as a continuous-time Markov process and the observation is a nonlinear function of state corrupted by an additive Gaussian noise. A dual process is introduced as a backward stochastic differential equation (BSDE). The process is used to transform the problem of minimum variance estimation into an optimal control problem. Its solution is obtained from an application of the maximum principle, and subsequently used to derive the equation of the nonlinear filter. The classical duality result of Kalman-Bucy is shown to be a special case.more » « less
-
null (Ed.)SUMMARY In this article, we investigate the problem of parameter identification of spatial–temporal varying processes described by a general nonlinear partial differential equation and validate the feasibility and robustness of the proposed algorithm using a group of coordinated mobile robots equipped with sensors in a realistic diffusion field. Based on the online parameter identification method developed in our previous work using multiple mobile robots, in this article, we first develop a parameterized model that represents the nonlinear spatially distributed field, then develop a parameter identification scheme consisting of a cooperative Kalman filter and recursive least square method. In the experiments, we focus on the diffusion field and consider the realistic scenarios that the diffusion field contains obstacles and hazard zones that the robots should avoid. The identified parameters together with the located source could potentially assist in the reconstruction and monitoring of the field. To validate the proposed methods, we generate a controllable carbon dioxide (CO 2 ) field in our laboratory and build a static CO 2 sensor network to measure and calibrate the field. With the reconstructed realistic diffusion field measured by the sensor network, a multi-robot system is developed to perform the parameter identification in the field. The results of simulations and experiments show satisfactory performance and robustness of the proposed algorithms.more » « less