skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Microwave imaging of quasi-periodic pulsations at flare current sheet
Abstract Quasi-periodic pulsations (QPPs) are frequently detected in solar and stellar flares, but the underlying physical mechanisms are still to be ascertained. Here, we show microwave QPPs during a solar flare originating from quasi-periodic magnetic reconnection at the flare current sheet. They appear as two vertically detached but closely related sources with the brighter ones located at flare loops and the weaker ones along the stretched current sheet. Although the brightness temperatures of the two microwave sources differ greatly, they vary in phase with periods of about 10–20 s and 30–60 s. The gyrosynchrotron-dominated microwave spectra also present a quasi-periodic soft-hard-soft evolution. These results suggest that relevant high-energy electrons are accelerated by quasi-periodic reconnection, likely arising from the modulation of magnetic islands within the current sheet as validated by a 2.5-dimensional magnetohydrodynamic simulation.  more » « less
Award ID(s):
1654382 2108853 1910354 2130832
PAR ID:
10393842
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Plasmoids (or magnetic islands) are believed to play an important role in the onset of fast magnetic reconnection and particle acceleration during solar flares and eruptions. Direct imaging of flare current sheets and the formation/ejection of multiple plasmoids in extreme-ultraviolet images, along with simultaneous X-ray and radio observations, offers significant insights into the mechanisms driving particle acceleration in solar flares. Here, we present direct imaging of the formation and ejection of multiple plasmoids in flare plasma/current sheets and the associated quasiperiodic pulsations (QPPs) observed at X-ray and radio wavelengths, using observations from the Solar Dynamics Observatory/Atmospheric Imaging Assembly, RHESSI, and the Fermi Gamma-ray Burst Monitor. These plasmoids propagate bidirectionally upward and downward along the flare current sheet beneath the erupting flux rope during two successive flares associated with confined/failed eruptions. The flux rope exhibits evidence of helical kink instability, with the formation and ejection of multiple plasmoids in the flare current sheet, as predicted in an MHD simulation of a kink-unstable flux rope. RHESSI X-ray images show double coronal sources (“looptop” and higher coronal sources) located at both ends of the flare current/plasma sheet. Moreover, we detect an additional transient faint X-ray source (6–12 keV) located between the double coronal sources, which is cospatial with multiple plasmoids in the flare current sheet. X-ray (soft and hard) and radio (decimetric) observations unveil QPPs (periods ≈ 10 s and 100 s) associated with the ejection and coalescence of plasmoids. These observations suggest that energetic electrons are accelerated during the ejection and coalescence of multiple plasmoids in the flare current sheet. 
    more » « less
  2. Abstract We analyze the structure and evolution of ribbons from the M7.3 SOL2014-04-18T13 flare using ultraviolet images from the Interface Region Imaging Spectrograph and the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA), magnetic data from the SDO/Helioseismic and Magnetic Imager, hard X-ray (HXR) images from the Reuven Ramaty High Energy Solar Spectroscopic Imager, and light curves from the Fermi/Gamma-ray Burst Monitor, in order to infer properties of coronal magnetic reconnection. As the event progresses, two flare ribbons spread away from the magnetic polarity inversion line. The width of the newly brightened front along the extension of the ribbon is highly intermittent in both space and time, presumably reflecting nonuniformities in the structure and/or dynamics of the flare current sheet. Furthermore, the ribbon width grows most rapidly in regions exhibiting concentrated nonthermal HXR emission, with sharp increases slightly preceding the HXR bursts. The light curve of the ultraviolet emission matches the HXR light curve at photon energies above 25 keV. In other regions the ribbon-width evolution and light curves do not temporally correlate with the HXR emission. This indicates that the production of nonthermal electrons is highly nonuniform within the flare current sheet. Our results suggest a strong connection between the production of nonthermal electrons and the locally enhanced perpendicular extent of flare ribbon fronts, which in turn reflects the inhomogeneous structure and/or reconnection dynamics of the current sheet. Despite this variability, the ribbon fronts remain nearly continuous, quasi-one-dimensional features. Thus, although the reconnecting coronal current sheets are highly structured, they remain quasi-two-dimensional and the magnetic energy release occurs systematically, rather than stochastically, through the volume of the reconnecting magnetic flux. 
    more » « less
  3. We analyzed Interface-Region Imaging Spectrograph (IRIS) and Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) observations of a small coronal jet that occurred at the solar west limb on 29 August 2014. The jet source region, a small bright point, was located at an active-region periphery and contained a fan-spine topology with a mini-filament. Our analysis has identified key features and timings that motivated the following interpretation of this event. As the stressed core flux rises, a current sheet forms beneath it; the ensuing reconnection forms a flux rope above a flare arcade. When the rising filament-carrying flux rope reaches the stressed null, it triggers a jet via explosive interchange (breakout) reconnection. During the flux-rope interaction with the external magnetic field, we observed brightening above the filament and within the dome, along with a growing flare arcade. EUV images reveal quasi-periodic ejections throughout the jet duration with a dominant period of 4 minutes, similar to coronal jetlets and larger jets. We conclude that these observations are consistent with the magnetic breakout model for coronal jets. 
    more » « less
  4. Magnetic reconnection is the key mechanism for energy release in solar eruptions, where the high-temperature emission is the primary diagnostic for investigating the plasma properties during the reconnection process. Non-thermal broadening of high-temperature lines has been observed in both the reconnection current sheet (CS) and flare loop-top regions by UV spectrometers, but its origin remains unclear. In this work, we use a recently developed three-dimensional magnetohydrodynamic (MHD) simulation to model magnetic reconnection in the standard solar flare geometry and reveal highly dynamic plasma flows in the reconnection regions. We calculate the synthetic profiles of the Fe XXI 1354 Å line observed by the Interface Region Imaging Spectrograph (IRIS) spacecraft by using parameters of the MHD model, including plasma density, temperature, and velocity. Our model shows that the turbulent bulk plasma flows in the CS and flare loop-top regions are responsible for the non-thermal broadening of the Fe XXI emission line. The modeled non-thermal velocity ranges from tens of km s −1 to more than two hundred km s −1 , which is consistent with the IRIS observations. Simulated 2D spectral line maps around the reconnection region also reveal highly dynamic downwflow structures where the high non-thermal velocity is large, which is consistent with the observations as well. 
    more » « less
  5. Abstract An overview is presented of our current understanding and open questions related to magnetic reconnection in solar flares and the near-sun (within around 20$$R_{s}$$ R s ) solar wind. The solar-flare-related topics include the mechanisms that facilitate fast energy release and that control flare onset, electron energization, ion energization and abundance enhancement, electron and ion transport, and flare-driven heating. Recent observations and models suggesting that interchange reconnection of multipolar magnetic fields within coronal holes could provide the energy required to drive the fast solar wind are also discussed. Recentin situobservations that reconnection in the heliospheric current sheet close to the sun drives energetic ions are also presented. The implications ofin situobservations of reconnection in the Earth space environment for understanding flares are highlighted. Finally, the impact of emerging computational and observational tools for understanding flare dynamics are discussed. 
    more » « less