skip to main content


Title: Exploring electromechanical utility of GaAs interdigitated transducers; using finite-element-method-based parametric analysis and experimental comparison
Analysis of interdigitated transducers often relies on phenomenological models to approximate device electrical performance. While these approaches prove essential for signal processing applications, phenomenological models provide limited information on the device’s mechanical response and physical characteristics of the generated acoustic field. Finite element method modeling, in comparison, offers a robust platform to study the effects of the full device geometry on critical performance parameters of interdigitated transducer devices. In this study, we fabricate a surface acoustic wave resonator on semi-insulating GaAs [Formula: see text], which consists of an interdigitated transducer and acoustic mirror assembly. The device is subsequently modeled using fem software. A vector network analyzer is used to measure the experimental device scattering response, which compares well with the simulated results. The wave characteristics of the experimental device are measured by contact-mode atomic force microscopy, which validates the simulation’s mechanical response predictions. We further show that a computational parametric analysis can be used to optimize device designs for series resonance frequency, effective coupling coefficient, quality factor, and maximum acoustic surface displacement.  more » « less
Award ID(s):
1809095 1808065
NSF-PAR ID:
10393914
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Vacuum Science & Technology B
Volume:
41
Issue:
1
ISSN:
2166-2746
Page Range / eLocation ID:
013203
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Interdigitated transducer devices provide an advantageous platform to study stress-enhanced interfacial phenomena at elevated temperatures but require a thorough understanding of temperature-dependent material properties. In this study, the temperature dependence of the piezoelectric coefficient for gallium arsenide is determined from 22 ℃ to 177 ℃. Experimental scattering parameter responses are measured for a two-port surface acoustic wave resonator at different temperatures and piezoelectric coefficient values are extracted using a frequency-domain finite element method simulation. Device measurements are taken using an interdigitated transducer fabricated on semi-insulating GaAs(100), oriented in the 〈110〉 direction and device resonant frequencies are shown to decrease with increasing temperature. The experimental scattering response is used to reconcile the simulated scattering response and extract the 𝑒14 piezoelectric coefficient, which is shown to increase linearly with temperature. Using the extracted 𝑒14, surface acoustic wave analysis is completed to study the magnitude of bulk stress values and surface displacement over the experimental temperature range produced by a standing surface acoustic wave field. Surface displacement measurements are taken at room temperature using contact-mode AFM, which corroborate the simulation predictions. The modeling results demonstrate an interdigitated transducers potential as an experimental stage to study surface and bulk stress effects on temperature-sensitive phenomena. 
    more » « less
  2. null (Ed.)
    Interdigitated transducer devices provide an advantageous platform to study stress-enhanced interfacial phenomena at elevated temperatures but require a thorough understanding of temperature-dependent material properties. In this study, the temperature dependence of the piezoelectric coefficient for gallium arsenide is determined from 22 ℃ to 177 ℃. Experimental scattering parameter responses are measured for a two-port surface acoustic wave resonator at different temperatures and piezoelectric coefficient values are extracted using a frequency-domain finite element method simulation. Device measurements are taken using an interdigitated transducer fabricated on semi-insulating GaAs(100), oriented in the 〈110〉 direction and device resonant frequencies are shown to decrease with increasing temperature. The experimental scattering response is used to reconcile the simulated scattering response and extract the e_14 piezoelectric coefficient, which is shown to increase linearly with temperature. Using the extracted e_14, surface acoustic wave analysis is completed to study the magnitude of bulk stress values and surface displacement over the experimental temperature range produced by a standing surface acoustic wave field. Surface displacement measurements are taken at room temperature using contact-mode AFM, which corroborate the simulation predictions. The modeling results demonstrate an interdigitated transducers potential as an experimental stage to study surface and bulk stress effects on temperature-sensitive phenomena. 
    more » « less
  3. The demand for acoustic wave-based devices has been rapidly increasing in the aerospace, chemical, and biological fields due to their versatility towards sensing measurands. This paper explores the characteristics and effectiveness of acoustic wave-based two-port sensors designed with bidirectional IDT electrodes placed in different configurations, such as surface mounted or embedded inside the substrate, through numerical and experimental analysis. The numerical study involves 3D modeling of the sensor design to investigate wave characteristics by utilizing time-domain, i.e., time delay and wave patterns, and frequency-domain analysis, i.e., scattering parameter study. The sensor made of polyvinylidene fluoride polymer is modeled to ensure the concordance between the theoretical and numerical results as well as a preliminary experimental result obtained from transparent piezoelectric films. The coupling of modes theoretical model is used to obtain the device’s frequency response by a transmission matrix cascading technique. These investigated results will stand as guidance and facilitate defining an approach that can predict the behavior of the sensor with a specific design under different operating environments and expand its viability towards multi-functional devices that are reliable and sensitive to intended measurands. 
    more » « less
  4. This article presents a method to monitor corrosion remotely, based on highly nonlinear solitary waves, which are compact and nondispersive. In the study presented in this article, two types of solitary wave transducers were used to monitor accelerated localized corrosion on a steel plate. The first type consists of a chain of spherical particles surmounted by a commercial solenoid wired to, and controlled by, a data acquisition system used to lift and release the first particle of the chain and induce the mechanical impacts and stress waves in the chain. The chain included a piezoelectric wafer disk, also wired to the same data acquisition system, to sense, digitize, and store the propagating waves for post-processing. The second type of transducer was identical to the first one but the data acquisition system was replaced by a wireless node that communicated with a mobile device using a Bluetooth connection. Eight transducers were used to monitor the plate for over a week to detect the onset and progression of localized corrosion. Corrosion detection was performed by extracting a few features from the time waveforms and feeding these features to an outlier analysis algorithm based on the Mahalanobis distance. The results of the experiment showed the effectiveness of the proposed monitoring approach at detecting defects close to the transducers and confirm previous numerical predictions by the authors. The experiments also provided evidence that the performance of the wireless transducers is nearly identical to the performance of their wired counterparts, paving the way to a new paradigm for the structural health monitoring of remote structural components in harsh environments.

     
    more » « less
  5. Background Porosity and other defects resultant by additive manufacturing processes are well-known to affect mechanical properties. However, there remains limited understanding regarding how the internal defect structure influences the evolution of the local strain field, as experimental investigations have not presented direct measurements of the evolving internal strain field in the presence of defects. Objective Interrupted in-situ tensile tests in a lab-based X-ray computed tomography machine were used to investigate the evolution of the strain field around internal defects. The evolution of the internal strain field facilitated examination of the role of specific defects in the macroscopic deformation of additively manufactured tensile coupons. Methods Samples were produced in 316L stainless steel by laser powder bed fusion. An in situ loading device was utilized to subject the samples to tensile failure within a tomographic scanning environment. Digital volume correlation was utilized to directly determine local strain levels within the additively manufactured components in the vicinity of porosity defects. Results Effects of porosity on strain localization and eventual failure of the samples were evaluated. Characteristics of the porosity distribution, including presence of porosity at the surface or near-surface of components, as well as the proximity of pores to each other were found to influence the evolution of failure. Early onset of failure was found to be associated with the availability of neighboring porosity that allowed for rapid progression of the fracture path. Conclusions The direct measurements of strain field evolution in the present study established understanding regarding how internal defect structure characteristics influence the evolution of the local strain field for additively manufactured components. This high fidelity characterization and the associated phenomenological observations have bearing for supporting validation of numerical modeling frameworks for describing failure in these materials. 
    more » « less