skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring electromechanical utility of GaAs interdigitated transducers; using finite-element-method-based parametric analysis and experimental comparison
Analysis of interdigitated transducers often relies on phenomenological models to approximate device electrical performance. While these approaches prove essential for signal processing applications, phenomenological models provide limited information on the device’s mechanical response and physical characteristics of the generated acoustic field. Finite element method modeling, in comparison, offers a robust platform to study the effects of the full device geometry on critical performance parameters of interdigitated transducer devices. In this study, we fabricate a surface acoustic wave resonator on semi-insulating GaAs [Formula: see text], which consists of an interdigitated transducer and acoustic mirror assembly. The device is subsequently modeled using fem software. A vector network analyzer is used to measure the experimental device scattering response, which compares well with the simulated results. The wave characteristics of the experimental device are measured by contact-mode atomic force microscopy, which validates the simulation’s mechanical response predictions. We further show that a computational parametric analysis can be used to optimize device designs for series resonance frequency, effective coupling coefficient, quality factor, and maximum acoustic surface displacement.  more » « less
Award ID(s):
1809095 1808065
PAR ID:
10393914
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Vacuum Science & Technology B
Volume:
41
Issue:
1
ISSN:
2166-2746
Page Range / eLocation ID:
013203
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Interdigitated transducer devices provide an advantageous platform to study stress-enhanced interfacial phenomena at elevated temperatures but require a thorough understanding of temperature-dependent material properties. In this study, the temperature dependence of the piezoelectric coefficient for gallium arsenide is determined from 22 ℃ to 177 ℃. Experimental scattering parameter responses are measured for a two-port surface acoustic wave resonator at different temperatures and piezoelectric coefficient values are extracted using a frequency-domain finite element method simulation. Device measurements are taken using an interdigitated transducer fabricated on semi-insulating GaAs(100), oriented in the 〈110〉 direction and device resonant frequencies are shown to decrease with increasing temperature. The experimental scattering response is used to reconcile the simulated scattering response and extract the 𝑒14 piezoelectric coefficient, which is shown to increase linearly with temperature. Using the extracted 𝑒14, surface acoustic wave analysis is completed to study the magnitude of bulk stress values and surface displacement over the experimental temperature range produced by a standing surface acoustic wave field. Surface displacement measurements are taken at room temperature using contact-mode AFM, which corroborate the simulation predictions. The modeling results demonstrate an interdigitated transducers potential as an experimental stage to study surface and bulk stress effects on temperature-sensitive phenomena. 
    more » « less
  2. null (Ed.)
    Interdigitated transducer devices provide an advantageous platform to study stress-enhanced interfacial phenomena at elevated temperatures but require a thorough understanding of temperature-dependent material properties. In this study, the temperature dependence of the piezoelectric coefficient for gallium arsenide is determined from 22 ℃ to 177 ℃. Experimental scattering parameter responses are measured for a two-port surface acoustic wave resonator at different temperatures and piezoelectric coefficient values are extracted using a frequency-domain finite element method simulation. Device measurements are taken using an interdigitated transducer fabricated on semi-insulating GaAs(100), oriented in the 〈110〉 direction and device resonant frequencies are shown to decrease with increasing temperature. The experimental scattering response is used to reconcile the simulated scattering response and extract the e_14 piezoelectric coefficient, which is shown to increase linearly with temperature. Using the extracted e_14, surface acoustic wave analysis is completed to study the magnitude of bulk stress values and surface displacement over the experimental temperature range produced by a standing surface acoustic wave field. Surface displacement measurements are taken at room temperature using contact-mode AFM, which corroborate the simulation predictions. The modeling results demonstrate an interdigitated transducers potential as an experimental stage to study surface and bulk stress effects on temperature-sensitive phenomena. 
    more » « less
  3. The most common bulk acoustic wave device used in biosensing applications is the quartz crystal microbalance (QCM), in which a resonant pure shear acoustic wave is excited via electrodes on both major faces of a thin AT-cut quartz plate. For biosensing, the QCM is used to detect the capture of a target by a target-capture film. The sensitivity of the QCM is typically based solely on the detection of mechanical property changes, as electrical property change detection is limited by the electrode on its sensing surface. A modification of the QCM called the lateral field excited (LFE) QCM (LFE-QCM) has been developed with a bare sensing surface as both electrodes are now on a single face of the quartz plate. Compared to the QCM, the LFE-QCM exhibits significantly higher sensitivity to both electrical and mechanical property changes. This paper presents theoretical and experimental aspects of LFE-QCMs. In particular, the presence and strength of the usual and newfound LFE-QCM modes depend on the electrical properties of the film and/or sensing environment. This work also presents examples of experimental setups for measuring the response of an LFE-QCM, followed by results of LFE-QCMs used to detect liquid electrical and mechanical properties, chemical targets, and biological targets. Finally, details are given about the attachment of various target-capture films to the LFE-QCM surface to capture biomarkers associated with diseases such as cancer. 
    more » « less
  4. Rizzo, Piervincenzo; Su, Zhongqing; Ricci, Fabrizio; Peters, Kara J (Ed.)
    Anisotropic collagen-based biomaterials have gained significant attention in the fields of tissue engineering and regenerative medicine. They have shown great potential for wound dressing, corneal grafting, and exploring the mechanism of cancer cell invasion. Various external physical field-based methods for the fabrication of anisotropic collagen-based biomaterials have been developed, including electrospinning, microfluidic shearing, mechanical loading, and so on. In this study, we put forward an acoustic streaming-based method that uses acoustic wave-induced fluid streaming to control collagen self-assembly and fiber arrangement. Our acoustic device leverages a piezoelectric transducer to generate traveling acoustic waves in fluids, and the wave-fluid interaction further induces fluid streaming, known as acoustic streaming. If the fluid contains collagen macromolecules, the acoustic streaming is able to affect the collagen self-assembly process to create biomaterials containing directionally arranged collagen fibers along the streaming velocity direction. Therefore, this acoustic streaming-based method allows for manufacturing collagen hydrogel layers that contain acoustically arranged collagen fibers and have controlled anisotropic material properties. We performed a series of proof-of-concept experiments by using a fabricated acoustic device to control the self-assembly process of collagens loaded in a Petri dish. Our results show the effectiveness of arranging collagen fibers that follow the flow direction of acoustic streaming. To better understand the collagen manipulation mechanism, we used particle image velocimetry to characterize the acoustic wave-induced fluid streaming. We expect this study can contribute to the fabrication of collagen-based anisotropic biomaterials for biomedical applications. 
    more » « less
  5. The demand for acoustic wave-based devices has been rapidly increasing in the aerospace, chemical, and biological fields due to their versatility towards sensing measurands. This paper explores the characteristics and effectiveness of acoustic wave-based two-port sensors designed with bidirectional IDT electrodes placed in different configurations, such as surface mounted or embedded inside the substrate, through numerical and experimental analysis. The numerical study involves 3D modeling of the sensor design to investigate wave characteristics by utilizing time-domain, i.e., time delay and wave patterns, and frequency-domain analysis, i.e., scattering parameter study. The sensor made of polyvinylidene fluoride polymer is modeled to ensure the concordance between the theoretical and numerical results as well as a preliminary experimental result obtained from transparent piezoelectric films. The coupling of modes theoretical model is used to obtain the device’s frequency response by a transmission matrix cascading technique. These investigated results will stand as guidance and facilitate defining an approach that can predict the behavior of the sensor with a specific design under different operating environments and expand its viability towards multi-functional devices that are reliable and sensitive to intended measurands. 
    more » « less