skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Entropic independence: optimal mixing of down-up random walks
We introduce a notion called entropic independence that is an entropic analog of spectral notions of high-dimensional expansion. Informally, entropic independence of a background distribution $$\mu$$ on $$k$$-sized subsets of a ground set of elements says that for any (possibly randomly chosen) set $$S$$, the relative entropy of a single element of $$S$$ drawn uniformly at random carries at most $O(1/k)$ fraction of the relative entropy of $$S$$. Entropic independence is the analog of the notion of spectral independence, if one replaces variance by entropy. We use entropic independence to derive tight mixing time bounds, overcoming the lossy nature of spectral analysis of Markov chains on exponential-sized state spaces. In our main technical result, we show a general way of deriving entropy contraction, a.k.a. modified log-Sobolev inequalities, for down-up random walks from spectral notions. We show that spectral independence of a distribution under arbitrary external fields automatically implies entropic independence. We furthermore extend our theory to the case where spectral independence does not hold under arbitrary external fields. To do this, we introduce a framework for obtaining tight mixing time bounds for Markov chains based on what we call restricted modified log-Sobolev inequalities, which guarantee entropy contraction not for all distributions, but for those in a sufficiently large neighborhood of the stationary distribution. To derive our results, we relate entropic independence to properties of polynomials: $$\mu$$ is entropically independent exactly when a transformed version of the generating polynomial of $$\mu$$ is upper bounded by its linear tangent; this property is implied by concavity of the said transformation, which was shown by prior work to be locally equivalent to spectral independence. We apply our results to obtain (1) tight modified log-Sobolev inequalities and mixing times for multi-step down-up walks on fractionally log-concave distributions, (2) the tight mixing time of $$O(n\log n)$$ for Glauber dynamics on Ising models whose interaction matrix has eigenspectrum lying within an interval of length smaller than $$1$$, improving upon the prior quadratic dependence on $$n$$, and (3) nearly-linear time $$\widetilde O_{\delta}(n)$$ samplers for the hardcore and Ising models on $$n$$-node graphs that have $$\delta$$-relative gap to the tree-uniqueness threshold. In the last application, our bound on the running time does not depend on the maximum degree $$\Delta$$ of the graph, and is therefore optimal even for high-degree graphs, and in fact, is sublinear in the size of the graph for high-degree graphs.  more » « less
Award ID(s):
2045354
PAR ID:
10393962
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing
Page Range / eLocation ID:
1418 to 1430
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For general spin systems, we prove that a contractive coupling for an arbitrary local Markov chain implies optimal bounds on the mixing time and the modified log-Sobolev constant for a large class of Markov chains including the Glauber dynamics, arbitrary heat-bath block dynamics, and the Swendsen-Wang dynamics. This reveals a novel connection between probabilistic techniques for bounding the convergence to stationarity and analytic tools for analyzing the decay of relative entropy. As a corollary of our general results, we obtain O(n log n) mixing time and Ω(1/n) modified log-Sobolev constant of the Glauber dynamics for sampling random q-colorings of an n-vertex graph with constant maximum degree Δ when q > (11/6–∊0)Δ for some fixed ∊0 > 0. We also obtain O(log n) mixing time and Ω(1) modified log-Sobolev constant of the Swendsen-Wang dynamics for the ferromagnetic Ising model on an n-vertex graph of constant maximum degree when the parameters of the system lie in the tree uniqueness region. At the heart of our results are new techniques for establishing spectral independence of the spin system and block factorization of the relative entropy. On one hand we prove that a contractive coupling of any local Markov chain implies spectral independence of the Gibbs distribution. On the other hand we show that spectral independence implies factorization of entropy for arbitrary blocks, establishing optimal bounds on the modified log-Sobolev constant of the corresponding block dynamics. 
    more » « less
  2. Megow, Nicole; Smith, Adam (Ed.)
    We consider spin systems on general n-vertex graphs of unbounded degree and explore the effects of spectral independence on the rate of convergence to equilibrium of global Markov chains. Spectral independence is a novel way of quantifying the decay of correlations in spin system models, which has significantly advanced the study of Markov chains for spin systems. We prove that whenever spectral independence holds, the popular Swendsen-Wang dynamics for the q-state ferromagnetic Potts model on graphs of maximum degree Δ, where Δ is allowed to grow with n, converges in O((Δ log n)^c) steps where c > 0 is a constant independent of Δ and n. We also show a similar mixing time bound for the block dynamics of general spin systems, again assuming that spectral independence holds. Finally, for monotone spin systems such as the Ising model and the hardcore model on bipartite graphs, we show that spectral independence implies that the mixing time of the systematic scan dynamics is O(Δ^c log n) for a constant c > 0 independent of Δ and n. Systematic scan dynamics are widely popular but are notoriously difficult to analyze. This result implies optimal O(log n) mixing time bounds for any systematic scan dynamics of the ferromagnetic Ising model on general graphs up to the tree uniqueness threshold. Our main technical contribution is an improved factorization of the entropy functional: this is the common starting point for all our proofs. Specifically, we establish the so-called k-partite factorization of entropy with a constant that depends polynomially on the maximum degree of the graph. 
    more » « less
  3. Spectral independence is a recently-developed framework for obtaining sharp bounds on the convergence time of the classical Glauber dynamics. This new framework has yielded optimal O(n log n) sampling algorithms on bounded-degree graphs for a large class of problems throughout the so-called uniqueness regime, including, for example, the problems of sampling independent sets, matchings, and Ising-model configurations. Our main contribution is to relax the bounded-degree assumption that has so far been important in establishing and applying spectral independence. Previous methods for avoiding degree bounds rely on using L_p-norms to analyse contraction on graphs with bounded connective constant (Sinclair, Srivastava, Yin; FOCS’13). The non-linearity of L_p-norms is an obstacle to applying these results to bound spectral independence. Our solution is to capture the L_p-analysis recursively by amortising over the subtrees of the recurrence used to analyse contraction. Our method generalises previous analyses that applied only to bounded-degree graphs. As a main application of our techniques, we consider the random graph G(n, d/n), where the previously known algorithms run in time n^O(log d) or applied only to large d. We refine these algorithmic bounds significantly, and develop fast nearly linear algorithms based on Glauber dynamics that apply to all constant d, throughout the uniqueness regime. 
    more » « less
  4. Spectral independence is a recently-developed framework for obtaining sharp bounds on the convergence time of the classical Glauber dynamics. This new framework has yielded optimal O(n log n) sampling algorithms on bounded-degree graphs for a large class of problems throughout the so-called uniqueness regime, including, for example, the problems of sampling independent sets, matchings, and Ising-model configurations. Our main contribution is to relax the bounded-degree assumption that has so far been important in establishing and applying spectral independence. Previous methods for avoiding degree bounds rely on using L^p-norms to analyse contraction on graphs with bounded connective constant (Sinclair, Srivastava, Yin; FOCS'13). The non-linearity of L^p-norms is an obstacle to applying these results to bound spectral independence. Our solution is to capture the L^p-analysis recursively by amortising over the subtrees of the recurrence used to analyse contraction. Our method generalises previous analyses that applied only to bounded-degree graphs. As a main application of our techniques, we consider the random graph G(n,d/n), where the previously known algorithms run in time n^O(log d) or applied only to large d. We refine these algorithmic bounds significantly, and develop fast nearly linear algorithms based on Glauber dynamics that apply to all constant d, throughout the uniqueness regime. 
    more » « less
  5. Abstract We prove that for a GNS-symmetric quantum Markov semigroup, the complete modified logarithmic Sobolev constant is bounded by the inverse of its complete positivity mixing time. For classical Markov semigroups, this gives a short proof that every sub-Laplacian of a Hörmander system on a compact manifold satisfies a modified log-Sobolev inequality uniformly for scalar and matrix-valued functions. For quantum Markov semigroups, we show that the complete modified logarithmic Sobolev constant is comparable to the spectral gap up to the logarithm of the dimension. Such estimates are asymptotically tight for a quantum birth-death process. Our results, along with the consequence of concentration inequalities, are applicable to GNS-symmetric semigroups on general von Neumann algebras. 
    more » « less