skip to main content


Title: Variation in upstream open reading frames contributes to allelic diversity in maize protein abundance
The 5 ′ untranslated region (UTR) sequence of eukaryotic mRNAs may contain upstream open reading frames (uORFs), which can regulate translation of the main ORF (mORF). The current model of translational regulation by uORFs posits that when a ribosome scans a mRNA and encounters an uORF, translation of that uORF can prevent ribosomes from reaching the mORF and cause decreased mORF translation. In this study, we first observed that rare variants in the 5 ′ UTR dysregulate maize ( Zea mays L. ) protein abundance. Upon further investigation, we found that rare variants near the start codon of uORFs can repress or derepress mORF translation, causing allelic changes in protein abundance. This finding holds for common variants as well, and common variants that modify uORF start codons also contribute disproportionately to metabolic and whole-plant phenotypes, suggesting that translational regulation by uORFs serves an adaptive function. These results provide evidence for the mechanisms by which natural sequence variation modulates gene expression, and ultimately, phenotype.  more » « less
Award ID(s):
1906619 1822330
NSF-PAR ID:
10394032
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
14
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Simon, Anne E. (Ed.)
    ABSTRACT Regardless of the general model of translation in eukaryotic cells, a number of studies suggested that many mRNAs encode multiple proteins. Leaky scanning, which supplies ribosomes to downstream open reading frames (ORFs) by readthrough of upstream ORFs, has great potential to translate polycistronic mRNAs. However, the mRNA elements controlling leaky scanning and their biological relevance have rarely been elucidated, with exceptions such as the Kozak sequence. Here, we have analyzed the strategy of a plant RNA virus to translate three movement proteins from a single RNA molecule through leaky scanning. The in planta and in vitro results indicate thatthe significantly shorter 5′ untranslated region (UTR) of the most upstream ORF promotes leaky scanning, potentially fine-tuning the translation efficiency of the three proteins in a single RNA molecule to optimize viral propagation. Our results suggest that the remarkably short length of the leader sequence, like the Kozak sequence, is a translational regulatory element with a biologically important role, as previous studies have shown biochemically. IMPORTANCE Potexvirus , a group of plant viruses, infect a variety of crops, including cultivated crops. It has been thought that the three transition proteins that are essential for the cell-to-cell transfer of potexviruses are translated from two subgenomic RNAs, sgRNA1 and sgRNA2. However, sgRNA2 has not been clearly detected. In this study, we have shown that sgRNA1, but not sgRNA2, is the major translation template for the three movement proteins. In addition, we determined the transcription start site of sgRNA1 in flexiviruses and found that the efficiency of leaky scanning caused by the short 5′ UTR of sgRNA1, a widely conserved feature, regulates the translation of the three movement proteins. When we tested the infection of viruses with mutations introduced into the length of the 5′ UTR, we found that the movement efficiency of the virus was affected. Our results provide important additional information on the protein translation strategy of flexiviruses, including Potexvirus , and provide a basis for research on their control as well as the need to reevaluate the short 5′ UTR as a translational regulatory element with an important role in vivo . 
    more » « less
  2. Barsh, Gregory S. (Ed.)
    Upstream open reading frames (uORFs) are present in over half of all human mRNAs. uORFs can potently regulate the translation of downstream open reading frames through several mechanisms: siphoning away scanning ribosomes, regulating re-initiation, and allowing interactions between scanning and elongating ribosomes. However, the consequences of these different mechanisms for the regulation of protein expression remain incompletely understood. Here, we performed systematic measurements on the uORF-containing 5′ UTR of the cytomegaloviral UL4 mRNA to test alternative models of uORF-mediated regulation in human cells. We find that a terminal diproline-dependent elongating ribosome stall in the UL4 uORF prevents decreases in main ORF protein expression when ribosome loading onto the mRNA is reduced. This uORF-mediated buffering is insensitive to the location of the ribosome stall along the uORF. Computational kinetic modeling based on our measurements suggests that scanning ribosomes dissociate rather than queue when they collide with stalled elongating ribosomes within the UL4 uORF. We identify several human uORFs that repress main ORF protein expression via a similar terminal diproline motif. We propose that ribosome stalls in uORFs provide a general mechanism for buffering against reductions in main ORF translation during stress and developmental transitions. 
    more » « less
  3. Abstract

    Translational reprogramming allows organisms to adapt to changing conditions. Upstream start codons (uAUGs), which are prevalently present in mRNAs, have crucial roles in regulating translation by providing alternative translation start sites1–4. However, what determines this selective initiation of translation between conditions remains unclear. Here, by integrating transcriptome-wide translational and structural analyses during pattern-triggered immunity inArabidopsis, we found that transcripts with immune-induced translation are enriched with upstream open reading frames (uORFs). Without infection, these uORFs are selectively translated owing to hairpins immediately downstream of uAUGs, presumably by slowing and engaging the scanning preinitiation complex. Modelling using deep learning provides unbiased support for these recognizable double-stranded RNA structures downstream of uAUGs (which we term uAUG-ds) being responsible for the selective translation of uAUGs, and allows the prediction and rational design of translating uAUG-ds. We found that uAUG-ds-mediated regulation can be generalized to human cells. Moreover, uAUG-ds-mediated start-codon selection is dynamically regulated. After immune challenge in plants, induced RNA helicases that are homologous to Ded1p in yeast and DDX3X in humans resolve these structures, allowing ribosomes to bypass uAUGs to translate downstream defence proteins. This study shows that mRNA structures dynamically regulate start-codon selection. The prevalence of this RNA structural feature and the conservation of RNA helicases across kingdoms suggest that mRNA structural remodelling is a general feature of translational reprogramming.

     
    more » « less
  4. Henkin, Tina M. (Ed.)
    ABSTRACT Regulation of gene expression is critical for Mycobacterium tuberculosis to tolerate stressors encountered during infection and for nonpathogenic mycobacteria such as Mycobacterium smegmatis to survive environmental stressors. Unlike better-studied models, mycobacteria express ∼14% of their genes as leaderless transcripts. However, the impacts of leaderless transcript structures on mRNA half-life and translation efficiency in mycobacteria have not been directly tested. For leadered transcripts, the contributions of 5′ untranslated regions (UTRs) to mRNA half-life and translation efficiency are similarly unknown. In M. tuberculosis and M. smegmatis , the essential sigma factor, SigA, is encoded by a transcript with a relatively short half-life. We hypothesized that the long 5′ UTR of sigA causes this instability. To test this, we constructed fluorescence reporters and measured protein abundance, mRNA abundance, and mRNA half-life and calculated relative transcript production rates. The sigA 5′ UTR conferred an increased transcript production rate, shorter mRNA half-life, and decreased apparent translation rate compared to a synthetic 5′ UTR commonly used in mycobacterial expression plasmids. Leaderless transcripts appeared to be translated with similar efficiency as those with the sigA 5′ UTR but had lower predicted transcript production rates. A global comparison of M. tuberculosis mRNA and protein abundances failed to reveal systematic differences in protein/mRNA ratios for leadered and leaderless transcripts, suggesting that variability in translation efficiency is largely driven by factors other than leader status. Our data are also discussed in light of an alternative model that leads to different conclusions and suggests leaderless transcripts may indeed be translated less efficiently. IMPORTANCE Tuberculosis, caused by Mycobacterium tuberculosis , is a major public health problem killing 1.5 million people globally each year. During infection, M. tuberculosis must alter its gene expression patterns to adapt to the stress conditions it encounters. Understanding how M. tuberculosis regulates gene expression may provide clues for ways to interfere with the bacterium’s survival. Gene expression encompasses transcription, mRNA degradation, and translation. Here, we used Mycobacterium smegmatis as a model organism to study how 5′ untranslated regions affect these three facets of gene expression in multiple ways. We furthermore provide insight into the expression of leaderless mRNAs, which lack 5′ untranslated regions and are unusually prevalent in mycobacteria. 
    more » « less
  5. Abstract

    A crucial step in functional genomics is identifying actively translated open reading frames (ORFs) and linking them to biological functions. The challenge lies in identifying short ORFs, as their identification is greatly influenced by data quality and depth. Here, we improved the coverage of super-resolution Ribo-seq in Arabidopsis (Arabidopsis thaliana), revealing uncharacterized translation events for nuclear, chloroplastic, and mitochondrial genes. Assisted by a transcriptome assembly, we identified 7,751 unconventional translation events, comprising 6,996 upstream ORFs (uORFs) and 209 downstream ORFs on annotated protein-coding genes, as well as 546 ORFs in presumed non-coding RNAs. Proteomics data confirmed the production of stable proteins from some of these unannotated translation events. We present evidence of active translation from primary transcripts of tasiRNAs (TAS1–4) and microRNAs (pri-MIR163, pri-MIR169), and periodic ribosome stalling supporting co-translational decay. Additionally, we developed a method for identifying extremely short uORFs, including 370 minimum uORFs (AUG-stop), and 2,921 tiny uORFs (2–10 amino acids), and 681 uORFs that overlap with each other. Remarkably, these short uORFs exhibit strong translational repression as do longer uORFs. We also systematically discovered 594 uORFs regulated by alternative splicing, suggesting widespread isoform-specific translational control. Finally, these prevalent uORFs are associated with numerous important pathways. In summary, our improved Arabidopsis translational landscape provides valuable resources to study gene expression regulation.

     
    more » « less