skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Timescale separation and models of symbiosis: state space reduction, multiple attractors and initialization
Abstract Dynamic Energy Budget models relate whole organism processes such as growth, reproduction and mortality to suborganismal metabolic processes. Much of their potential derives from extensions of the formalism to describe the exchange of metabolic products between organisms or organs within a single organism, for example the mutualism between corals and their symbionts. Without model simplification, such models are at risk of becoming parameter-rich and hence impractical. One natural simplification is to assume that some metabolic processes act on ‘fast’ timescales relative to others. A common strategy for formulating such models is to assume that ‘fast’ processes equilibrate immediately, while ‘slow’ processes are described by ordinary differential equations. This strategy can bring a subtlety with it. What if there are multiple, interdependent fast processes that have multiple equilibria, so that additional information is needed to unambiguously specify the model dynamics? This situation can easily arise in contexts where an organism or community can persist in a ‘healthy’ or an ‘unhealthy’ state with abrupt transitions between states possible. To approach this issue, we offer the following: (a) a method to unambiguously complete implicitly defined models by adding hypothetical ‘fast’ state variables; (b) an approach for minimizing the number of additional state variables in such models, which can simplify the numerical analysis and give insights into the model dynamics; and (c) some implications of the new approach that are of practical importance for model dynamics, e.g. on the bistability of flux dynamics and the effect of different initialization choices on model outcomes. To demonstrate those principles, we use a simplified model for root-shoot dynamics of plants and a related model for the interactions between corals and endosymbiotic algae that describes coral bleaching and recovery.  more » « less
Award ID(s):
1921356 1921425
PAR ID:
10394142
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Conservation Physiology
Volume:
10
Issue:
1
ISSN:
2051-1434
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Body size profoundly affects organism fitness and ecosystem dynamics through the scaling of physiological traits. This study tested for variation in metabolic scaling and its potential drivers among corals differing in life history strategies and taxonomic identity. Data were compiled from published sources and augmented with empirical measurements of corals in Moorea, French Polynesia. The data compilation revealed metabolic isometry in broadcasted larvae, but size-independent metabolism in brooded larvae; empirical measurements of Pocillopora acuta larvae also supported size-independent metabolism in brooded coral larvae. In contrast, for juvenile colonies (i.e. 1–4 cm diameter), metabolic scaling was isometric for Pocillopora spp., and negatively allometric for Porites spp. The scaling of biomass with surface area was isometric for Pocillopora spp., but positively allometric for Porites spp., suggesting the surface area to biomass ratio mediates metabolic scaling in these corals. The scaling of tissue biomass and metabolism were not affected by light treatment (i.e. either natural photoperiods or constant darkness) in either juvenile taxa. However, biomass was reduced by 9–15% in the juvenile corals from the light treatments and this coincided with higher metabolic scaling exponents, thus supporting the causal role of biomass in driving variation in scaling. This study shows that metabolic scaling is plastic in early life stages of corals, with intrinsic differences between life history strategy (i.e. brooded and broadcasted larvae) and taxa (i.e. Pocillopora spp. and Porites spp.), and acquired differences attributed to changes in area-normalized biomass. 
    more » « less
  2. null (Ed.)
    This paper systematically decomposes a quadrupedal robot into bipeds to rapidly generate walking gaits and then recomposes these gaits to obtain quadrupedal locomotion. We begin by decomposing the full-order, nonlinear and hybrid dynamics of a three-dimensional quadrupedal robot, including its continuous and discrete dynamics, into two bipedal systems that are subject to external forces. Using the hybrid zero dynamics (HZD) framework, gaits for these bipedal robots can be rapidly generated (on the order of seconds) along with corresponding controllers. The decomposition is achieved in such a way that the bipedal walking gaits and controllers can be composed to yield dynamic walking gaits for the original quadrupedal robot - the result is the rapid generation of dynamic quadruped gaits utilizing the full-order dynamics. This methodology is demonstrated through the rapid generation (3.96 seconds on average) of four stepping-in-place gaits and one diagonally symmetric ambling gait at 0.35 m/s on a quadrupedal robot - the Vision 60, with 36 state variables and 12 control inputs - both in simulation and through outdoor experiments. This suggested a new approach for fast quadrupedal trajectory planning using full-body dynamics, without the need for empirical model simplification, wherein methods from dynamic bipedal walking can be directly applied to quadrupeds. 
    more » « less
  3. Cassio de Campos, Marloes H. (Ed.)
    Causal analyses of longitudinal data generally assume that the qualitative causal structure relating variables remains invariant over time. In structured systems that transition between qualitatively differ- ent states in discrete time steps, such an approach is deficient on two fronts. First, time-varying variables may have state-specific causal relationships that need to be captured. Second, an intervention can result in state transitions downstream of the intervention different from those actually observed in the data. In other words, interventions may counter- factually alter the subsequent temporal evolution of the system. We introduce a generalization of causal graphical models, Path Dependent Structural Equation Models (PDSEMs), that can describe such systems. We show how causal inference may be performed in such models and illustrate its use in simulations and data obtained from a septoplasty surgical procedure. 
    more » « less
  4. null (Ed.)
    Abstract. We present a newly developed upper-thermocline, open-ocean biogeochemical flux model that is complex and flexible enough to capture open-ocean ecosystem dynamics but reduced enough to incorporate into highly resolved numerical simulations and parameter optimization studies with limited additional computational cost. The model, which is derived from the full 56-state-variable Biogeochemical Flux Model (BFM56; Vichi et al., 2007), follows a biological and chemical functional group approach and allows for the development of critical non-Redfield nutrient ratios. Matter is expressed in units of carbon, nitrogen, and phosphate, following techniques used in more complex models. To reduce the overall computational cost and to focus on upper-thermocline, open-ocean, and non-iron-limited or non-silicate-limited conditions, the reduced model eliminates certain processes, such as benthic, silicate, and iron influences, and parameterizes others, such as the bacterial loop. The model explicitly tracks 17 state variables, divided into phytoplankton, zooplankton, dissolved organic matter, particulate organic matter, and nutrient groups. It is correspondingly called the Biogeochemical Flux Model 17 (BFM17). After describing BFM17, we couple it with the one-dimensional Princeton Ocean Model for validation using observational data from the Sargasso Sea. The results agree closely with observational data, giving correlations above 0.85, except for chlorophyll (0.63) and oxygen (0.37), as well as with corresponding results from BFM56, with correlations above 0.85, except for oxygen (0.56), including the ability to capture the subsurface chlorophyll maximum and bloom intensity. In comparison to previous models of similar size, BFM17 provides improved correlations between several model output fields and observational data, indicating that reproduction of in situ data can be achieved with a low number of variables, while maintaining the functional group approach. Notable additions to BFM17 over similar complexity models are the explicit tracking of dissolved oxygen, allowance for non-Redfield nutrient ratios, and both dissolved and particulate organic matter, all within the functional group framework. 
    more » « less
  5. null (Ed.)
    Text Simplification improves the readability of sentences through several rewriting transformations, such as lexical paraphrasing, deletion, and splitting. Current simplification systems are predominantly sequence-to-sequence models that are trained end-to-end to perform all these operations simultaneously. However, such systems limit themselves to mostly deleting words and cannot easily adapt to the requirements of different target audiences. In this paper, we propose a novel hybrid approach that leverages linguistically-motivated rules for splitting and deletion, and couples them with a neural paraphrasing model to produce varied rewriting styles. We introduce a new data augmentation method to improve the paraphrasing capability of our model. Through automatic and manual evaluations, we show that our proposed model establishes a new state-of-the-art for the task, paraphrasing more often than the existing systems, and can control the degree of each simplification operation applied to the input texts. 
    more » « less