skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1921356

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Spatial processes, particularly scale‐dependent feedbacks, may play important and underappreciated roles in the dynamics of bistable ecosystems. For example, self‐organised spatial patterns can allow for stable coexistence of alternative states outside regions of bistability, a phenomenon known as a Busse balloon. We used partial differential equations to explore the potential for such dynamics in coral reefs, focusing on how herbivore behaviour and mobility affect the stability of coral‐ and macroalgal‐dominated states. Herbivore attraction to coral resulted in a Busse balloon that enhanced macroalgal resilience, with patterns persisting in regions of parameter space where nonspatial models predict uniform coral dominance. Thus, our work suggests herbivore association with coral (e.g., for shelter) can prevent reefs from reaching a fully coral‐dominated state. More broadly, this study illustrates how consumer space use can prevent ecosystems from undergoing wholesale state transitions, highlighting the importance of explicitly accounting for space when studying bistable systems. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Abstract The coral-dinoflagellate endosymbiosis is based on nutrient exchanges that impact holobiont energetics. Of particular concern is the breakdown or dysbiosis of this partnership that is seen in response to elevated temperatures, where loss of symbionts through coral bleaching can lead to starvation and mortality. Here we extend a dynamic bioenergetic model of coral symbioses to explore the mechanisms by which temperature impacts various processes in the symbiosis and to enable simulational analysis of thermal bleaching. Our model tests the effects of two distinct mechanisms for how increased temperature impacts the symbiosis: 1) accelerated metabolic rates due to thermodynamics and 2) damage to the photosynthetic machinery of the symbiont caused by heat stress. Model simulations show that the model can capture key biological responses to different levels of increased temperatures. Moderately increased temperatures increase metabolic rates and slightly decrease photosynthesis. The slightly decreased photosynthesis rates cause the host to receive less carbon and share more nitrogen with the symbiont. This results in temporarily increased symbiont growth and a higher symbiont/host ratio. In contrast, higher temperatures cause a breakdown of the symbiosis due to escalating feedback that involves further reduction in photosynthesis and insufficient energy supply for$$\hbox {CO}_2$$ CO 2 concentration by the host. This leads to the accumulation of excess light energy and the generation of reactive oxygen species, eventually triggering symbiont expulsion and coral bleaching. Importantly, bleaching does not result from accelerated metabolic rates alone; it only occurs as a result of the photodamage mechanism due to its effect on nutrient cycling. Both higher light intensities and higher levels of DIN render corals more susceptible to heat stress. Conversely, heterotrophic feeding can increase the maximal temperature that can be tolerated by the coral. Collectively these results show that a bioenergetics model can capture many observed patterns of heat stress in corals, such as higher metabolic rates and higher symbiont/host ratios at moderately increased temperatures and symbiont expulsion at strongly increased temperatures. 
    more » « less
  3. Abstract Multispecies mutualisms are embedded in a network of interactions that include predation, yet the effects of predation on mutualism function have not been well integrated into mutualism theory. Where predators have been considered, the common prediction is that predators reduce mutualist abundance and, as a consequence, decrease service provision. Here, we use a mathematical model of a predatory fish that consumes two competing coral mutualists to show that predators can also have indirect positive effects on hosts when they preferentially consume competitively dominant mutualists that are also lower in quality. In these cases, predation reverses the outcome of competition, allowing the higher quality mutualist to dominate and enhancing host performance. The direction and strength of predator effects depend on asymmetries in mutualist competition, service provision, and predation vulnerability. Our findings suggest that when the strength of predation shifts (e.g., due to exploitative harvest of top predators, introduction of new species, or range shifts in response to climate change), mutualist communities will exhibit dynamic responses with nonmonotonic effects on host service provision. 
    more » « less
  4. Abstract Dynamic Energy Budget models relate whole organism processes such as growth, reproduction and mortality to suborganismal metabolic processes. Much of their potential derives from extensions of the formalism to describe the exchange of metabolic products between organisms or organs within a single organism, for example the mutualism between corals and their symbionts. Without model simplification, such models are at risk of becoming parameter-rich and hence impractical. One natural simplification is to assume that some metabolic processes act on ‘fast’ timescales relative to others. A common strategy for formulating such models is to assume that ‘fast’ processes equilibrate immediately, while ‘slow’ processes are described by ordinary differential equations. This strategy can bring a subtlety with it. What if there are multiple, interdependent fast processes that have multiple equilibria, so that additional information is needed to unambiguously specify the model dynamics? This situation can easily arise in contexts where an organism or community can persist in a ‘healthy’ or an ‘unhealthy’ state with abrupt transitions between states possible. To approach this issue, we offer the following: (a) a method to unambiguously complete implicitly defined models by adding hypothetical ‘fast’ state variables; (b) an approach for minimizing the number of additional state variables in such models, which can simplify the numerical analysis and give insights into the model dynamics; and (c) some implications of the new approach that are of practical importance for model dynamics, e.g. on the bistability of flux dynamics and the effect of different initialization choices on model outcomes. To demonstrate those principles, we use a simplified model for root-shoot dynamics of plants and a related model for the interactions between corals and endosymbiotic algae that describes coral bleaching and recovery. 
    more » « less
  5. Cooke, Steven (Ed.)
    Abstract Coral reefs are increasingly experiencing stressful conditions, such as high temperatures, that cause corals to undergo bleaching, a process where they lose their photosynthetic algal symbionts. Bleaching threatens both corals’ survival and the health of the reef ecosystems they create. One possible mechanism for corals to resist bleaching is through association with stress-tolerant symbionts, which are resistant to bleaching but may be worse partners in mild conditions. Some corals have been found to associate with multiple symbiont species simultaneously, which potentially gives them access to the benefits of both stress-sensitive and -tolerant symbionts. However, within-host competition between symbionts may lead to competitive exclusion of one partner, and the consequences of associating with multiple partners simultaneously are not well understood. We modify a mechanistic model of coral-algal symbiosis to investigate the effect of environmental conditions on within-host competitive dynamics between stress-sensitive and -tolerant symbionts and the effect of access to a tolerant symbiont on the dynamics of recovery from bleaching. We found that the addition of a tolerant symbiont can increase host survival and recovery from bleaching in high-light conditions. Competitive exclusion of the tolerant symbiont occurred slowly at intermediate light levels. Interestingly, there were some cases of post-bleaching competitive exclusion after the tolerant symbiont had helped the host recover. 
    more » « less