skip to main content


This content will become publicly available on May 22, 2024

Title: Modelling wintertime sea-spray aerosols under Arctic haze conditions
Anthropogenic and natural emissions contribute to enhanced concentrations of aerosols in the Arctic winter and early spring, with most attention being paid to anthropogenic aerosols that contribute to so-called Arctic haze. Less-well-studied wintertime sea-spray aerosols (SSAs) under Arctic haze conditions are the focus of this study, since they can make an important contribution to wintertime Arctic aerosol abundances. Analysis of field campaign data shows evidence for enhanced local sources of SSAs, including marine organics at Utqiaġvik (formerly known as Barrow) in northern Alaska, United States, during winter 2014. Models tend to underestimate sub-micron SSAs and overestimate super-micron SSAs in the Arctic during winter, including the base version of the Weather Research Forecast coupled with Chemistry (WRF-Chem) model used here, which includes a widely used SSA source function based on Gong et al. (1997). Quasi-hemispheric simulations for winter 2014 including updated wind speed and sea-surface temperature (SST) SSA emission dependencies and sources of marine sea-salt organics and sea-salt sulfate lead to significantly improved model performance compared to observations at remote Arctic sites, notably for coarse-mode sodium and chloride, which are reduced. The improved model also simulates more realistic contributions of SSAs to inorganic aerosols at different sites, ranging from 20 %–93 % in the observations. Two-thirds of the improved model performance is from the inclusion of the dependence on SSTs. The simulation of nitrate aerosols is also improved due to less heterogeneous uptake of nitric acid on SSAs in the coarse mode and related increases in fine-mode nitrate. This highlights the importance of interactions between natural SSAs and inorganic anthropogenic aerosols that contribute to Arctic haze. Simulation of organic aerosols and the fraction of sea-salt sulfate are also improved compared to observations. However, the model underestimates episodes with elevated observed concentrations of SSA components and sub-micron non-sea-salt sulfate at some Arctic sites, notably at Utqiaġvik. Possible reasons are explored in higher-resolution runs over northern Alaska for periods corresponding to the Utqiaġvik field campaign in January and February 2014. The addition of a local source of sea-salt marine organics, based on the campaign data, increases modelled organic aerosols over northern Alaska. However, comparison with previous available data suggests that local natural sources from open leads, as well as local anthropogenic sources, are underestimated in the model. Missing local anthropogenic sources may also explain the low modelled (sub-micron) non-sea-salt sulfate at Utqiaġvik. The introduction of a higher wind speed dependence for sub-micron SSA emissions, also based on Arctic data, reduces biases in modelled sub-micron SSAs, while sea-ice fractions, including open leads, are shown to be an important factor controlling modelled super-micron, rather than sub-micron, SSAs over the north coast of Alaska. The regional results presented here show that modelled SSAs are more sensitive to wind speed dependence but that realistic modelling of sea-ice distributions is needed for the simulation of local SSAs, including marine organics. This study supports findings from the Utqiaġvik field campaign that open leads are the primary source of fresh and aged SSAs, including marine organic aerosols, during wintertime at Utqiaġvik; these findings do not suggest an influence from blowing snow and frost flowers. To improve model simulations of Arctic wintertime aerosols, new field data on processes that influence wintertime SSA production, in particular for fine-mode aerosols, are needed as is improved understanding about possible local anthropogenic sources.  more » « less
Award ID(s):
1724585 2127733
NSF-PAR ID:
10489174
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Copernicus Publications
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
23
Issue:
10
ISSN:
1680-7324
Page Range / eLocation ID:
5641 to 5678
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Even though the Arctic is remote, aerosol properties observed there arestrongly influenced by anthropogenic emissions from outside the Arctic. Thisis particularly true for the so-called Arctic haze season (January throughApril). In summer (June through September), when atmospheric transportpatterns change, and precipitation is more frequent, local Arctic sources,i.e., natural sources of aerosols and precursors, play an important role.Over the last few decades, significant reductions in anthropogenic emissionshave taken place. At the same time a large body of literature shows evidencethat the Arctic is undergoing fundamental environmental changes due toclimate forcing, leading to enhanced emissions by natural processes that mayimpact aerosol properties. In this study, we analyze 9 aerosol chemical species and 4 particleoptical properties from 10 Arctic observatories (Alert, Kevo, Pallas,Summit, Thule, Tiksi, Barrow/Utqiaġvik, Villum, and Gruvebadet and ZeppelinObservatory – both at Ny-Ålesund Research Station) to understand changesin anthropogenic and natural aerosol contributions. Variables includeequivalent black carbon, particulate sulfate, nitrate, ammonium,methanesulfonic acid, sodium, iron, calcium and potassium, as well asscattering and absorption coefficients, single scattering albedo andscattering Ångström exponent. First, annual cycles are investigated, which despite anthropogenic emissionreductions still show the Arctic haze phenomenon. Second, long-term trendsare studied using the Mann–Kendall Theil–Sen slope method. We find in total41 significant trends over full station records, i.e., spanning more than adecade, compared to 26 significant decadal trends. The majority ofsignificantly declining trends is from anthropogenic tracers and occurredduring the haze period, driven by emission changes between 1990 and 2000.For the summer period, no uniform picture of trends has emerged. Twenty-sixpercent of trends, i.e., 19 out of 73, are significant, and of those 5 arepositive and 14 are negative. Negative trends include not only anthropogenictracers such as equivalent black carbon at Kevo, but also natural indicatorssuch as methanesulfonic acid and non-sea-salt calcium at Alert. Positivetrends are observed for sulfate at Gruvebadet. No clear evidence of a significant change in the natural aerosolcontribution can be observed yet. However, testing the sensitivity of theMann–Kendall Theil–Sen method, we find that monotonic changes of around 5 % yr−1 in an aerosol property are needed to detect a significanttrend within one decade. This highlights that long-term efforts well beyonda decade are needed to capture smaller changes. It is particularly importantto understand the ongoing natural changes in the Arctic, where interannualvariability can be high, such as with forest fire emissions and theirinfluence on the aerosol population. To investigate the climate-change-induced influence on the aerosolpopulation and the resulting climate feedback, long-term observations oftracers more specific to natural sources are needed, as well as of particlemicrophysical properties such as size distributions, which can be used toidentify changes in particle populations which are not well captured bymass-oriented methods such as bulk chemical composition. 
    more » « less
  2. The number concentration and properties of aerosol particles serving as cloud condensation nuclei (CCN) are important for understanding cloud properties, including in the tropical Atlantic marine boundary layer (MBL), where marine cumulus clouds reflect incoming solar radiation and obscure the low-albedo ocean surface. Studies linking aerosol source, composition, and water uptake properties in this region have been conducted primarily during the summertime dust transport season, despite the region receiving a variety of aerosol particle types throughout the year. In this study, we compare size-resolved aerosol chemical composition data to the hygrocopicity parameter κ derived from size-resolved CCN measurements made during the Elucidating the Role of Clouds-Circulation Coupling in Climate (EUREC4A) and Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC) campaigns from January to February 2020. We observed unexpected periods of wintertime long-range transport of African smoke and dust to Barbados. During these periods, the accumulation-mode aerosol particle and CCN Number concentrations as well as the proportions of dust and smoke particles increased, whereas average κ slightly decreased (κ = 0.46 +/- 0.10) from marine background conditions (κ = 0.52 +/- 0.09) when the particles were mostly composed of marine organics and sulfate. Size-resolved chemical analysis shows that smoke particles were the major contributor to the accumulation mode during long-range transport events, indicating that smoke is mainly responsible for the observed increase in CCN number concentrations. Earlier studies conducted at Barbados have mostly focused on the role of dust in CCN, but our results show that aerosol hygroscopicity and CCN number concentrations during wintertime long-range transport events over the tropical North Atlantic are also affected by African smoke. Our findings highlight the importance of African smoke for atmospheric processes and cloud formation over the Caribbean. In the file “Dust_Mass_Conc_Royer2022” dust mass concentrations in grams per meter^3 are provided for each day of sampling. These data were used to generate Figure 2a in the manuscript. The file “Particle_Type_#fract_Royer2022” contains data obtained through CCSEM/EDX analysis and used to generate the temporal chemistry plot (Figure 4) provided in the manuscript. The data contains particle numbers for each particle type identified on stage 3 of the sampler, total particle numbers analyzed for the entire stage 3 sample, as well as particle number fractions in % values. In the file “Size-resolved_chem_Royer2022” we provide particle # and number fraction (%) values used to generate size-resolved chemistry plots in the manuscript (Figures 5a and 5b). The file includes all particle numbers and number fractions for sea salt, aged sea salt, dust+sea salt, dust, dust+smoke, smoke, sulfate, and organic particles in each size bin from 0.1 through 8.058 um during cumulative clean marine periods and CAT Event 1 as described in the manuscript. The file “K_at_0.16S_Royer2022” contains κ values calculated at 0.16% supersaturation (S) throughout the entire sampling period. These data were specifically used to generate the plot in Figure 7a. The file “CCN#_at_0.16S_Royer2022” contains cloud condensation nuclei (CCN) values calculated at 0.16% supersaturation (S) throughout the entire sampling period. These data were used to create the CCN portion of the plot in Figure 7b. 
    more » « less
  3. Abstract

    Anthropogenic sulfate aerosols are estimated to have offset 60% of greenhouse-gas-induced warming in the Arctic, a region warming four times faster than the rest of the world. However, sulfate radiative forcing estimates remain uncertain because the relative contributions from anthropogenic versus natural sources to total sulfate aerosols are unknown. Here we measure sulfur isotopes of sulfate in a Summit, Greenland ice core from 1850 to 2006 CE to quantify the contribution of anthropogenic sulfur emissions to ice core sulfate. We use a Keeling plot to determine the anthropogenic sulfur isotopic signature (δ34Santhro= +2.9 ± 0.3 ‰), and compare this result to a compilation of sulfur isotope measurements of oil and coal. Using δ34Santhro, we quantify anthropogenic sulfate concentration separated from natural sulfate. Anthropogenic sulfate concentration increases to 67 ± 7% of non-sea-salt sulfate (65.1 ± 20.2µg kg−1) during peak anthropogenic emissions from 1960 to 1990 and decreases to 45 ± 11% of non-sea-salt sulfate (25.4 ± 12.8µg kg−1) from 1996 to 2006. These observations provide the first long-term record of anthropogenic sulfate distinguished from natural sources (e.g. volcanoes, dimethyl sulfide), and can be used to evaluate model characterization of anthropogenic sulfate aerosol fraction and radiative forcing over the industrial era.

     
    more » « less
  4. Abstract

    Reactive chlorine and bromine species emitted from snow and aerosols can significantly alter the oxidative capacity of the polar boundary layer. However, halogen production mechanisms from snow remain highly uncertain, making it difficult for most models to include descriptions of halogen snow emissions and to understand the impact on atmospheric chemistry. We investigate the influence of Arctic halogen emissions from snow on boundary layer oxidation processes using a one‐dimensional atmospheric chemistry and transport model (PACT‐1D). To understand the combined impact of snow emissions and boundary layer dynamics on atmospheric chemistry, we model Cl2and Br2primary emissions from snow and include heterogeneous recycling of halogens on both snow and aerosols. We focus on a 2‐day case study from the 2009 Ocean‐Atmosphere‐Sea Ice‐Snowpack campaign at Utqiaġvik, Alaska. The model reproduces both the diurnal cycle and high quantity of Cl2observed, along with the measured concentrations of Br2, BrO, and HOBr. Due to the combined effects of emissions, recycling, vertical mixing, and atmospheric chemistry, reactive chlorine is typically confined to the lowest 15 m of the atmosphere, while bromine can impact chemistry up to and above the surface inversion height. Upon including halogen emissions and recycling, the concentration of HOx(HOx = OH + HO2) at the surface increases by as much as a factor of 30 at mid‐day. The change in HOxdue to halogen chemistry, as well as chlorine atoms derived from snow emissions, significantly reduce volatile organic compound lifetimes within a shallow layer near the surface.

     
    more » « less
  5. Anthropogenic sulfate aerosols are estimated to have offset sixty percent of greenhouse-gas-induced warming in the Arctic, a region warming four times faster than the rest of the world. However, sulfate radiative forcing estimates remain uncertain because the relative contributions from anthropogenic versus natural sources to total sulfate aerosols are unknown. Here we measure sulfur isotopes of sulfate in a Summit, Greenland ice core from 1850 to 2006 CE to quantify the contribution of anthropogenic sulfur emissions to ice core sulfate. We use a Keeling Plot to determine the anthropogenic sulfur isotopic signature (δ34Santhro = +2.9  0.3 ‰), and compare this result to a compilation of sulfur isotope measurements of oil and coal. Using δ34Santhro, we quantify anthropogenic sulfate concentration separated from natural sulfate. Anthropogenic sulfate concentration increases to 68 ± 7% of non-sea-salt sulfate (65.1 ± 20.2 µg kg-1) during peak anthropogenic emissions from 1960 to 1990 and decreases to 45 ± 11% of non-sea-salt sulfate (25.4 ± 12.8 µg kg-1) from 1996 to 2006. These observations provide the first long-term record of anthropogenic sulfate distinguished from natural sources (e.g., volcanoes, dimethyl sulfide), and can be used to evaluate model characterization of anthropogenic sulfate aerosol fraction and radiative forcing over the industrial era. These data include sulfur isotopes of sulfate measurements from a Greenland ice core from 1850-2006. The preindustrial dataset (1200-1850) is uploaded to the Arctic data center here: doi:10.18739/A2N873162 
    more » « less