A quasi steady-state model (QSM) for accurately predicting the detailed diffusion-dominated dissolution process of polydisperse spheroidal (prolate, oblate, and spherical) particle systems with a broad range of distributions of particle size and aspect ratio has been developed. A rigorous, mathematics-based QSM of the dissolution of single spheroidal particles has been incorporated into the well-established framework of polydisperse dissolution models based on the assumption of uniform bulk concentration. Validation against experimental results shows that this model can accurately predict the increase in bulk concentration of polydisperse systems with various particle sizes and shape parameters. A series of representative instances involving the dissolution of polydisperse felodipine particles at various concentration ratios is used to demonstrate the model’s effectiveness, rendering it a valuable tool for understanding and managing complex systems with diverse particle characteristics.
more »
« less
Quasi-steady-state modelling and characterization of diffusion-controlled dissolution from monodisperse prolate and oblate spheroidal particles
A quasi-steady-state model of the dissolution of a single prolate or oblate spheroidal particle has been developed based on the exact solution of the steady-state diffusion equation for mass transfer in an unconfined media. With appropriate treatment of bulk concentration, the model can predict the detailed dissolution process of a single particle in a container of finite size. The dimensionless governing equations suggest that the dissolution process is determined by three dimensionless control parameters, initial solid particle concentration, particle aspect ratio and the product of specific volume of solid particles and saturation concentration of the dissolved substance. Using this model, the dissolution processes of felodipine particles are analysed in a broad range of space of the three control parameters and some characteristics are identified. The effects of material properties indicated by the product of specific volume and saturation concentration are also analysed. The model and the analysis are applicable to the system of monodisperse spheroidal particles of the same shape.
more »
« less
- Award ID(s):
- 2138740
- PAR ID:
- 10394239
- Date Published:
- Journal Name:
- Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
- Volume:
- 478
- Issue:
- 2267
- ISSN:
- 1364-5021
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A quasi steady-state model (QSM) for accurately predicting the detailed diffusion-dominated dissolution process of polydisperse spheroidal (prolate, oblate, and spherical) particle systems was presented Part I of this study. In the present paper, the dissolution characteristics of typical polydisperse spheroidal particle systems have been extensively investigated. The effects of the distributions of particle size and shape have been studied by examining the detailed dissolution processes, such as the size reduction rates of individual particles, the increase in bulk concentration, and the dissolution time of the polydisperse systems. Some important factors controlling the dissolution process, including initial particle concentration, smallest and largest particle sizes, and the smallest and largest Taylor shape parameters, have been identified.more » « less
-
Abstract Ultrasound‐directed self‐assembly (DSA) uses ultrasound waves to organize and orient particles dispersed in a fluid medium into specific patterns. Combining ultrasound DSA with vat photopolymerization (VP) enables manufacturing materials layer‐by‐layer, wherein each layer the organization and orientation of particles in the photopolymer is controlled, which enables tailoring the properties of the resulting composite materials. However, the particle packing density changes with time and location as particles organize into specific patterns. Hence, relating the ultrasound DSA process parameters to the transient local particle packing density is important to tailor the properties of the composite material, and to determine the maximum speed of the layer‐by‐layer VP process. This paper theoretically derives and experimentally validates a 3D ultrasound DSA model and evaluates the local particle packing density at locations where particles assemble as a function of time and ultrasound DSA process parameters. The particle packing density increases with increasing particle volume fraction, decreasing particle size, and decreasing fluid medium viscosity is determined. Increasing the particle size and decreasing the fluid medium viscosity decreases the time to reach steady‐state. This work contributes to using ultrasound DSA and VP as a materials manufacturing process.more » « less
-
Water vapor condensation on hygroscopic aerosol particles plays an important role in cloud formation, climate change, secondary aerosol formation, and aerosol aging. Conventional understanding considers deliquescence of nanosized hygroscopic aerosol particles a nearly instantaneous solid to liquid phase transition. However, the nanoscale dynamics of water condensation and aerosol particle dissolution prior to and during deliquescence remain obscure due to a lack of high spatial and temporal resolution single particle measurements. Here we use real time in situ transmission electron microscopy (TEM) imaging of individual sodium chloride (NaCl) nanoparticles to demonstrate that water adsorption and aerosol particle dissolution prior to and during deliquescence is a multistep dynamic process. Water condensation and aerosol particle dissolution was investigated for lab generated NaCl aerosols and found to occur in three distinct stages as a function of increasing RH. First, a < 100 nm water layer adsorbed on the NaCl cubes and caused sharp corners to dissolve and truncate. The water layer grew to several hundred nanometers with increasing RH and was rapidly saturated with solute, as evidenced by halting of particle dissolution. Adjacent cube corners displayed second-scale curvature fluctuations with no net particle dissolution or water layer thickness change. We propose that droplet solute concentration fluctuations drove NaCl transport from regions of high local curvature to regions of low curvature. Finally, we observed coexistence of a liquid water droplet and aerosol particle immediately prior to deliquescence. Particles dissolved discretely along single crystallographic directions, separating by few second lag times with no dissolution. This work demonstrates that deliquescence of simple pure salt particles with sizes in the range of 100 nm to several microns is not an instantaneous phase transition and instead involves a range of complex dissolution and water condensation dynamics.more » « less
-
Abstract The cycling of biologically produced calcium carbonate (CaCO3) in the ocean is a fundamental component of the global carbon cycle. Here, we present experimental determinations of in situ coccolith and foraminiferal calcite dissolution rates. We combine these rates with solid phase fluxes, dissolved tracers, and historical data to constrain the alkalinity cycle in the shallow North Pacific Ocean. The in situ dissolution rates of coccolithophores demonstrate a nonlinear dependence on saturation state. Dissolution rates of all three major calcifying groups (coccoliths, foraminifera, and aragonitic pteropods) are too slow to explain the patterns of both CaCO3sinking flux and alkalinity regeneration in the North Pacific. Using a combination of dissolved and solid‐phase tracers, we document a significant dissolution signal in seawater supersaturated for calcite. Driving CaCO3dissolution with a combination of ambient saturation state and oxygen consumption simultaneously explains solid‐phase CaCO3flux profiles and patterns of alkalinity regeneration across the entire N. Pacific basin. We do not need to invoke the presence of carbonate phases with higher solubilities. Instead, biomineralization and metabolic processes intimately associate the acid (CO2) and the base (CaCO3) in the same particles, driving the coupled shallow remineralization of organic carbon and CaCO3. The linkage of these processes likely occurs through a combination of dissolution due to zooplankton grazing and microbial aerobic respiration within degrading particle aggregates. The coupling of these cycles acts as a major filter on the export of both organic and inorganic carbon to the deep ocean.more » « less
An official website of the United States government

