skip to main content

Title: Revealing the Progenitor of SN 2021zby through Analysis of the TESS Shock-cooling Light Curve

We present early observations and analysis of the double-peaked Type IIb supernova (SN IIb) SN 2021zby. TESS captured the prominent early shock-cooling peak of SN 2021zby within the first ∼10 days after explosion with a 30 minute cadence. We present optical and near-infrared spectral series of SN 2021zby, including three spectra during the shock-cooling phase. Using a multiband model fit, we find that the inferred properties of its progenitor are consistent with a red supergiant or yellow supergiant, with an envelope mass of ∼0.30–0.65Mand an envelope radius of ∼120–300R. These inferred progenitor properties are similar to those of other SNe IIb with a double-peaked feature, such as SNe 1993J, 2011dh, 2016gkg, and 2017jgh. This study further validates the importance of the high cadence and early coverage in resolving the shape of the shock-cooling light curve, while the multiband observations, particularly UV, are also necessary to fully constrain the progenitor properties.

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publication Date:
Journal Name:
The Astrophysical Journal Letters
Page Range or eLocation-ID:
Article No. L15
DOI PREFIX: 10.3847
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract SN 2017jgh is a type IIb supernova discovered by Pan-STARRS during the C16/C17 campaigns of the Kepler/K2 mission. Here we present the Kepler/K2 and ground based observations of SN 2017jgh, which captured the shock cooling of the progenitor shock breakout with an unprecedented cadence. This event presents a unique opportunity to investigate the progenitors of stripped envelope supernovae. By fitting analytical models to the SN 2017jgh lightcurve, we find that the progenitor of SN 2017jgh was likely a yellow supergiant with an envelope radius of ∼50 − 290 R⊙, and an envelope mass of ∼0 − 1.7 M⊙. SN 2017jgh likely had a shock velocity of ∼7500 − 10300 km s−1. Additionally, we use the lightcurve of SN 2017jgh to investigate how early observations of the rise contribute to constraints on progenitor models. Fitting just the ground based observations, we find an envelope radius of ∼50 − 330 R⊙, an envelope mass of ∼0.3 − 1.7 M⊙ and a shock velocity of ∼9, 000 − 15, 000 km s−1. Without the rise, the explosion time can not be well constrained which leads to a systematic offset in the velocity parameter and larger uncertainties in the mass and radius. Therefore, it is likely that progenitor property estimates throughmore »these models may have larger systematic uncertainties than previously calculated.« less
  2. Abstract

    We present near- and mid-infrared (0.9–18μm) photometry of supernova (SN) 2021afdx, which was imaged serendipitously with the James Webb Space Telescope (JWST) as part of its Early Release Observations of the Cartwheel Galaxy. Our ground-based optical observations show it is likely to be a Type IIb SN, the explosion of a yellow supergiant, and its infrared spectral energy distribution (SED) ≈200 days after explosion shows two distinct components, which we attribute to hot ejecta and warm dust. By fitting models of dust emission to the SED, we derive a dust mass of(3.80.3+0.5)×103M, which is the highest yet observed in a Type IIb SN but consistent with other Type II SNe observed by the Spitzer Space Telescope. We also find that the radius of the dust is significantly larger than the radius of the ejecta, as derived from spectroscopic velocities during the photospheric phase, which implies that we are seeing an infrared echo off of preexisting dust in the progenitor environment, rather than dust newly formed by the SN. Our results show the power of JWST to address questions of dust formation in SNe, and therefore the presence of dust in the early universe,more »with much larger samples than have been previously possible.

    « less
  3. Abstract

    A growing number of core-collapse supernovae (SNe) that show evidence for interaction with dense circumstellar medium (CSM) are accompanied by “precursor” optical emission rising weeks to months prior to the explosion. The precursor luminosities greatly exceed the Eddington limit of the progenitor star, implying that they are accompanied by substantial mass loss. Here, we present a semi-analytic model for SN precursor light curves, which we apply to constrain the properties and mechanisms of the pre-explosion mass loss. We explore two limiting mass-loss scenarios: (1) an “eruption” arising from shock breakout following impulsive energy deposition below the stellar surface; and (2) a steady “wind,” due to sustained heating of the progenitor envelope. The eruption model, which resembles a scaled-down version of Type IIP SNe, can explain the luminosities and timescales of well-sampled precursors, for ejecta masses ∼ 0.1–1Mand velocities ∼ 100–1000 km s−1. By contrast, the steady wind scenario cannot explain the highest precursor luminosities ≳ 1041erg s−1, under the constraint that the total ejecta mass does not exceed the entire progenitor mass (though the less luminous SN 2020tlf precursor can be explained by a mass-loss rate ∼ 1Myr−1). However, shock interaction between the wind and pre-existing (earlier ejected) CSMmore »may boost its radiative efficiency and mitigate this constraint. In both the eruption and wind scenarios, the precursor ejecta forms compact (≲1015cm) optically thick CSM at the time of core collapse; though only directly observable via rapid post-explosion spectroscopy (≲ a few days before being overtaken by the SN ejecta), this material can boost the SN luminosity via shock interaction.

    « less
  4. Abstract We present high-cadence optical, ultraviolet (UV), and near-infrared data of the nearby ( D ≈ 23 Mpc) Type II supernova (SN) 2021yja. Many Type II SNe show signs of interaction with circumstellar material (CSM) during the first few days after explosion, implying that their red supergiant (RSG) progenitors experience episodic or eruptive mass loss. However, because it is difficult to discover SNe early, the diversity of CSM configurations in RSGs has not been fully mapped. SN 2021yja, first detected within ≈ 5.4 hours of explosion, shows some signatures of CSM interaction (high UV luminosity and radio and x-ray emission) but without the narrow emission lines or early light-curve peak that can accompany CSM. Here we analyze the densely sampled early light curve and spectral series of this nearby SN to infer the properties of its progenitor and CSM. We find that the most likely progenitor was an RSG with an extended envelope, encompassed by low-density CSM. We also present archival Hubble Space Telescope imaging of the host galaxy of SN 2021yja, which allows us to place a stringent upper limit of ≲ 9 M ☉ on the progenitor mass. However, this is in tension with some aspects of themore »SN evolution, which point to a more massive progenitor. Our analysis highlights the need to consider progenitor structure when making inferences about CSM properties, and that a comprehensive view of CSM tracers should be made to give a fuller view of the last years of RSG evolution.« less
  5. Abstract

    We present photometric and spectroscopic data of SN 2018lab, a low-luminosity Type IIP supernova (LLSN) with aV-band peak luminosity of −15.1 ± 0.1 mag. SN 2018lab was discovered by the Distance Less Than 40 Mpc (DLT40) SN survey only 0.73 days post-explosion, as determined by observations from the Transiting Exoplanet Survey Satellite (TESS). TESS observations of SN 2018lab yield a densely sampled, fast-rising, early-time light curve likely powered by ejecta–circumstellar medium (CSM) interaction. The blueshifted, broadened flash feature in the earliest spectra (<2 days) of SN 2018lab provides further evidence for ejecta–CSM interaction. The early emission features in the spectra of SN 2018lab are well described by models of a red supergiant progenitor with an extended envelope and a close-in CSM. As one of the few LLSNe with observed flash features, SN 2018lab highlights the need for more early spectra to explain the diversity of the flash feature morphology of Type II SNe.