We propose a fast stochastic Hamilton Monte Carlo (HMC) method, for sampling from a smooth and strongly log-concave distribution. At the core of our proposed method is a variance reduction technique inspired by the recent advance in stochastic optimization. We show that, to achieve $$\epsilon$$ accuracy in 2-Wasserstein distance, our algorithm achieves $$\tilde O\big(n+\kappa^{2}d^{1/2}/\epsilon+\kappa^{4/3}d^{1/3}n^{2/3}/\epsilon^{2/3}%\wedge\frac{\kappa^2L^{-2}d\sigma^2}{\epsilon^2} \big)$$ gradient complexity (i.e., number of component gradient evaluations), which outperforms the state-of-the-art HMC and stochastic gradient HMC methods in a wide regime. We also extend our algorithm for sampling from smooth and general log-concave distributions, and prove the corresponding gradient complexity as well. Experiments on both synthetic and real data demonstrate the superior performance of our algorithm. 
                        more » 
                        « less   
                    
                            
                            Accelerating SGD for Highly Ill-Conditioned Huge-Scale Online Matrix Completion
                        
                    
    
            The matrix completion problem seeks to recover a $$d\times d$$ ground truth matrix of low rank $$r\ll d$$ from observations of its individual elements. Real-world matrix completion is often a huge-scale optimization problem, with $$d$$ so large that even the simplest full-dimension vector operations with $O(d)$ time complexity become prohibitively expensive. Stochastic gradient descent (SGD) is one of the few algorithms capable of solving matrix completion on a huge scale, and can also naturally handle streaming data over an evolving ground truth. Unfortunately, SGD experiences a dramatic slow-down when the underlying ground truth is ill-conditioned; it requires at least $$O(\kappa\log(1/\epsilon))$$ iterations to get $$\epsilon$$-close to ground truth matrix with condition number $$\kappa$$. In this paper, we propose a preconditioned version of SGD that preserves all the favorable practical qualities of SGD for huge-scale online optimization while also making it agnostic to $$\kappa$$. For a symmetric ground truth and the Root Mean Square Error (RMSE) loss, we prove that the preconditioned SGD converges to $$\epsilon$$-accuracy in $$O(\log(1/\epsilon))$$ iterations, with a rapid linear convergence rate as if the ground truth were perfectly conditioned with $$\kappa=1$$. In our numerical experiments, we observe a similar acceleration for ill-conditioned matrix completion under the 1-bit cross-entropy loss, as well as pairwise losses such as the Bayesian Personalized Ranking (BPR) loss. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2047462
- PAR ID:
- 10394475
- Date Published:
- Journal Name:
- Advances in neural information processing systems
- ISSN:
- 1049-5258
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We consider the problem of performing linear regression over a stream of d-dimensional examples, and show that any algorithm that uses a subquadratic amount of memory exhibits a slower rate of convergence than can be achieved without memory constraints. Specifically, consider a sequence of labeled examples (a_1,b_1), (a_2,b_2)..., with a_i drawn independently from a d-dimensional isotropic Gaussian, and where b_i = + \eta_i, for a fixed x in R^d with ||x||= 1 and with independent noise \eta_i drawn uniformly from the interval [-2^{-d/5},2^{-d/5}]. We show that any algorithm with at most d^2/4 bits of memory requires at least \Omega(d \log \log \frac{1}{\epsilon}) samples to approximate x to \ell_2 error \epsilon with probability of success at least 2/3, for \epsilon sufficiently small as a function of d. In contrast, for such \epsilon, x can be recovered to error \epsilon with probability 1-o(1) with memory O\left(d^2 \log(1/\epsilon)\right) using d examples. This represents the first nontrivial lower bounds for regression with super-linear memory, and may open the door for strong memory/sample tradeoffs for continuous optimization.more » « less
- 
            Bilevel optimization has recently attracted considerable attention due to its abundant applications in machine learning problems. However, existing methods rely on prior knowledge of problem parameters to determine stepsizes, resulting in significant effort in tuning stepsizes when these parameters are unknown. In this paper, we propose two novel tuning-free algorithms, D-TFBO and S-TFBO. D-TFBO employs a double-loop structure with stepsizes adaptively adjusted by the "inverse of cumulative gradient norms" strategy. S-TFBO features a simpler fully single-loop structure that updates three variables simultaneously with a theory-motivated joint design of adaptive stepsizes for all variables. We provide a comprehensive convergence analysis for both algorithms and show that D-TFBO and S-TFBO respectively require $$\mathcal{O}(\frac{1}{\epsilon})$$ and $$\mathcal{O}(\frac{1}{\epsilon}\log^4(\frac{1}{\epsilon}))$$ iterations to find an $$\epsilon$$-accurate stationary point, (nearly) matching their well-tuned counterparts using the information of problem parameters. Experiments on various problems show that our methods achieve performance comparable to existing well-tuned approaches, while being more robust to the selection of initial stepsizes. To the best of our knowledge, our methods are the first to completely eliminate the need for stepsize tuning, while achieving theoretical guarantees.more » « less
- 
            An \ell _p oblivious subspace embedding is a distribution over r \times n matrices \Pi such that for any fixed n \times d matrix A , \[ \Pr _{\Pi }[\textrm {for all }x, \ \Vert Ax\Vert _p \le \Vert \Pi Ax\Vert _p \le \kappa \Vert Ax\Vert _p] \ge 9/10,\] where r is the dimension of the embedding, \kappa is the distortion of the embedding, and for an n -dimensional vector y , \Vert y\Vert _p = (\sum _{i=1}^n |y_i|^p)^{1/p} is the \ell _p -norm. Another important property is the sparsity of \Pi , that is, the maximum number of non-zero entries per column, as this determines the running time of computing \Pi A . While for p = 2 there are nearly optimal tradeoffs in terms of the dimension, distortion, and sparsity, for the important case of 1 \le p \lt 2 , much less was known. In this article, we obtain nearly optimal tradeoffs for \ell _1 oblivious subspace embeddings, as well as new tradeoffs for 1 \lt p \lt 2 . Our main results are as follows: (1) We show for every 1 \le p \lt 2 , any oblivious subspace embedding with dimension r has distortion \[ \kappa = \Omega \left(\frac{1}{\left(\frac{1}{d}\right)^{1 / p} \log ^{2 / p}r + \left(\frac{r}{n}\right)^{1 / p - 1 / 2}}\right).\] When r = {\operatorname{poly}}(d) \ll n in applications, this gives a \kappa = \Omega (d^{1/p}\log ^{-2/p} d) lower bound, and shows the oblivious subspace embedding of Sohler and Woodruff (STOC, 2011) for p = 1 is optimal up to {\operatorname{poly}}(\log (d)) factors. (2) We give sparse oblivious subspace embeddings for every 1 \le p \lt 2 . Importantly, for p = 1 , we achieve r = O(d \log d) , \kappa = O(d \log d) and s = O(\log d) non-zero entries per column. The best previous construction with s \le {\operatorname{poly}}(\log d) is due to Woodruff and Zhang (COLT, 2013), giving \kappa = \Omega (d^2 {\operatorname{poly}}(\log d)) or \kappa = \Omega (d^{3/2} \sqrt {\log n} \cdot {\operatorname{poly}}(\log d)) and r \ge d \cdot {\operatorname{poly}}(\log d) ; in contrast our r = O(d \log d) and \kappa = O(d \log d) are optimal up to {\operatorname{poly}}(\log (d)) factors even for dense matrices. We also give (1) \ell _p oblivious subspace embeddings with an expected 1+\varepsilon number of non-zero entries per column for arbitrarily small \varepsilon \gt 0 , and (2) the first oblivious subspace embeddings for 1 \le p \lt 2 with O(1) -distortion and dimension independent of n . Oblivious subspace embeddings are crucial for distributed and streaming environments, as well as entrywise \ell _p low-rank approximation. Our results give improved algorithms for these applications.more » « less
- 
            We develop a general framework for finding approximately-optimal preconditioners for solving linear systems. Leveraging this framework we obtain improved runtimes for fundamental preconditioning and linear system solving problems including the following. \begin{itemize} \item \textbf{Diagonal preconditioning.} We give an algorithm which, given positive definite $$\mathbf{K} \in \mathbb{R}^{d \times d}$$ with $$\mathrm{nnz}(\mathbf{K})$$ nonzero entries, computes an $$\epsilon$$-optimal diagonal preconditioner in time $$\widetilde{O}(\mathrm{nnz}(\mathbf{K}) \cdot \mathrm{poly}(\kappa^\star,\epsilon^{-1}))$$, where $$\kappa^\star$$ is the optimal condition number of the rescaled matrix. \item \textbf{Structured linear systems.} We give an algorithm which, given $$\mathbf{M} \in \mathbb{R}^{d \times d}$$ that is either the pseudoinverse of a graph Laplacian matrix or a constant spectral approximation of one, solves linear systems in $$\mathbf{M}$$ in $$\widetilde{O}(d^2)$$ time. \end{itemize} Our diagonal preconditioning results improve state-of-the-art runtimes of $$\Omega(d^{3.5})$$ attained by general-purpose semidefinite programming, and our solvers improve state-of-the-art runtimes of $$\Omega(d^{\omega})$$ where $$\omega > 2.3$$ is the current matrix multiplication constant. We attain our results via new algorithms for a class of semidefinite programs (SDPs) we call \emph{matrix-dictionary approximation SDPs}, which we leverage to solve an associated problem we call \emph{matrix-dictionary recovery}.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    