skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: Tight Bounds for ℓ 1 Oblivious Subspace Embeddings
An \ell _p oblivious subspace embedding is a distribution over r \times n matrices \Pi such that for any fixed n \times d matrix A , \[ \Pr _{\Pi }[\textrm {for all }x, \ \Vert Ax\Vert _p \le \Vert \Pi Ax\Vert _p \le \kappa \Vert Ax\Vert _p] \ge 9/10,\] where r is the dimension of the embedding, \kappa is the distortion of the embedding, and for an n -dimensional vector y , \Vert y\Vert _p = (\sum _{i=1}^n |y_i|^p)^{1/p} is the \ell _p -norm. Another important property is the sparsity of \Pi , that is, the maximum number of non-zero entries per column, as this determines the running time of computing \Pi A . While for p = 2 there are nearly optimal tradeoffs in terms of the dimension, distortion, and sparsity, for the important case of 1 \le p \lt 2 , much less was known. In this article, we obtain nearly optimal tradeoffs for \ell _1 oblivious subspace embeddings, as well as new tradeoffs for 1 \lt p \lt 2 . Our main results are as follows: (1) We show for every 1 \le p \lt 2 , any oblivious subspace embedding with dimension r has distortion \[ \kappa = \Omega \left(\frac{1}{\left(\frac{1}{d}\right)^{1 / p} \log ^{2 / p}r + \left(\frac{r}{n}\right)^{1 / p - 1 / 2}}\right).\] When r = {\operatorname{poly}}(d) \ll n in applications, this gives a \kappa = \Omega (d^{1/p}\log ^{-2/p} d) lower bound, and shows the oblivious subspace embedding of Sohler and Woodruff (STOC, 2011) for p = 1 is optimal up to {\operatorname{poly}}(\log (d)) factors. (2) We give sparse oblivious subspace embeddings for every 1 \le p \lt 2 . Importantly, for p = 1 , we achieve r = O(d \log d) , \kappa = O(d \log d) and s = O(\log d) non-zero entries per column. The best previous construction with s \le {\operatorname{poly}}(\log d) is due to Woodruff and Zhang (COLT, 2013), giving \kappa = \Omega (d^2 {\operatorname{poly}}(\log d)) or \kappa = \Omega (d^{3/2} \sqrt {\log n} \cdot {\operatorname{poly}}(\log d)) and r \ge d \cdot {\operatorname{poly}}(\log d) ; in contrast our r = O(d \log d) and \kappa = O(d \log d) are optimal up to {\operatorname{poly}}(\log (d)) factors even for dense matrices. We also give (1) \ell _p oblivious subspace embeddings with an expected 1+\varepsilon number of non-zero entries per column for arbitrarily small \varepsilon \gt 0 , and (2) the first oblivious subspace embeddings for 1 \le p \lt 2 with O(1) -distortion and dimension independent of n . Oblivious subspace embeddings are crucial for distributed and streaming environments, as well as entrywise \ell _p low-rank approximation. Our results give improved algorithms for these applications.  more » « less
Award ID(s):
1815840
PAR ID:
10423335
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ACM Transactions on Algorithms
Volume:
18
Issue:
1
ISSN:
1549-6325
Page Range / eLocation ID:
1 to 32
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Can linear systems be solved faster than matrix multiplication? While there has been remarkable progress for the special cases of graph structured linear systems, in the general setting, the bit complexity of solving an $$n \times n$$ linear system $Ax=b$ is $$\tilde{O}(n^\omega)$$, where $$\omega < 2.372864$$ is the matrix multiplication exponent. Improving on this has been an open problem even for sparse linear systems with poly$(n)$ condition number. In this paper, we present an algorithm that solves linear systems in sparse matrices asymptotically faster than matrix multiplication for any $$\omega > 2$$. This speedup holds for any input matrix $$A$$ with $$o(n^{\omega -1}/\log(\kappa(A)))$$ non-zeros, where $$\kappa(A)$$ is the condition number of $$A$$. For poly$(n)$-conditioned matrices with $$\tilde{O}(n)$$ nonzeros, and the current value of $$\omega$$, the bit complexity of our algorithm to solve to within any $$1/\text{poly}(n)$$ error is $$O(n^{2.331645})$$. Our algorithm can be viewed as an efficient, randomized implementation of the block Krylov method via recursive low displacement rank factorizations. It is inspired by the algorithm of [Eberly et al. ISSAC `06 `07] for inverting matrices over finite fields. In our analysis of numerical stability, we develop matrix anti-concentration techniques to bound the smallest eigenvalue and the smallest gap in eigenvalues of semi-random matrices. 
    more » « less
  2. Abstract Assume $$\mathsf {ZF} + \mathsf {AD}$$ and all sets of reals are Suslin. Let $$\Gamma $$ be a pointclass closed under $$\wedge $$ , $$\vee $$ , $$\forall ^{\mathbb {R}}$$ , continuous substitution, and has the scale property. Let $$\kappa = \delta (\Gamma )$$ be the supremum of the length of prewellorderings on $$\mathbb {R}$$ which belong to $$\Delta = \Gamma \cap \check \Gamma $$ . Let $$\mathsf {club}$$ denote the collection of club subsets of $$\kappa $$ . Then the countable length everywhere club uniformization holds for $$\kappa $$ : For every relation $$R \subseteq {}^{<{\omega _1}}\kappa \times \mathsf {club}$$ with the property that for all $$\ell \in {}^{<{\omega _1}}\kappa $$ and clubs $$C \subseteq D \subseteq \kappa $$ , $$R(\ell ,D)$$ implies $$R(\ell ,C)$$ , there is a uniformization function $$\Lambda : \mathrm {dom}(R) \rightarrow \mathsf {club}$$ with the property that for all $$\ell \in \mathrm {dom}(R)$$ , $$R(\ell ,\Lambda (\ell ))$$ . In particular, under these assumptions, for all $$n \in \omega $$ , $$\boldsymbol {\delta }^1_{2n + 1}$$ satisfies the countable length everywhere club uniformization. 
    more » « less
  3. Given a matrix A ∈ ℝn\texttimes{}d and a vector b ∈ ℝn, we consider the regression problem with ℓ∞ guarantees: finding a vector x′ ∈ ℝd such that $$||x'-x^* ||_infty leq frac{epsilon}{sqrt{d}}cdot ||Ax^*-b||_2cdot ||A^dagger||$$, where x* = arg minx∈Rd ||Ax – b||2. One popular approach for solving such ℓ2 regression problem is via sketching: picking a structured random matrix S ∈ ℝm\texttimes{}n with m < n and S A can be quickly computed, solve the "sketched" regression problem arg minx∈ℝd ||S Ax – Sb||2. In this paper, we show that in order to obtain such ℓ∞ guarantee for ℓ2 regression, one has to use sketching matrices that are dense. To the best of our knowledge, this is the first user case in which dense sketching matrices are necessary. On the algorithmic side, we prove that there exists a distribution of dense sketching matrices with m = ε-2d log3(n/δ) such that solving the sketched regression problem gives the ℓ∞ guarantee, with probability at least 1 – δ. Moreover, the matrix S A can be computed in time O(nd log n). Our row count is nearly-optimal up to logarithmic factors, and significantly improves the result in (Price et al., 2017), in which a superlinear in d rows, m = Ω(ε-2d1+γ) for γ ∈ (0, 1) is required. Moreover, we develop a novel analytical framework for ℓ∞ guarantee regression that utilizes the Oblivious Coordinate-wise Embedding (OCE) property introduced in (Song \& Yu, 2021). Our analysis is much simpler and more general than that of (Price et al., 2017). Leveraging this framework, we extend the ℓ∞ guarantee regression result to dense sketching matrices for computing the fast tensor product of vectors. 
    more » « less
  4. We study the $$\ell_p$$ regression problem, which requires finding $$\mathbf{x}\in\mathbb R^{d}$$ that minimizes $$\|\mathbf{A}\mathbf{x}-\mathbf{b}\|_p$$ for a matrix $$\mathbf{A}\in\mathbb R^{n \times d}$$ and response vector $$\mathbf{b}\in\mathbb R^{n}$$. There has been recent interest in developing subsampling methods for this problem that can outperform standard techniques when $$n$$ is very large. However, all known subsampling approaches have run time that depends exponentially on $$p$$, typically, $$d^{\mathcal{O}(p)}$$, which can be prohibitively expensive. We improve on this work by showing that for a large class of common \emph{structured matrices}, such as combinations of low-rank matrices, sparse matrices, and Vandermonde matrices, there are subsampling based methods for $$\ell_p$$ regression that depend polynomially on $$p$$. For example, we give an algorithm for $$\ell_p$$ regression on Vandermonde matrices that runs in time $$\mathcal{O}(n\log^3 n+(dp^2)^{0.5+\omega}\cdot\text{polylog}\,n)$$, where $$\omega$$ is the exponent of matrix multiplication. The polynomial dependence on $$p$$ crucially allows our algorithms to extend naturally to efficient algorithms for $$\ell_\infty$$ regression, via approximation of $$\ell_\infty$$ by $$\ell_{\mathcal{O}(\log n)}$$. Of practical interest, we also develop a new subsampling algorithm for $$\ell_p$$ regression for arbitrary matrices, which is simpler than previous approaches for $$p \ge 4$$. 
    more » « less
  5. Abstract For $$p\geq 1$$ and $$(g_{ij})_{1\leq i,j\leq n}$$ being a matrix of i.i.d. standard Gaussian entries, we study the $$n$$-limit of the $$\ell _p$$-Gaussian–Grothendieck problem defined as $$\begin{align*} & \max\Bigl\{\sum_{i,j=1}^n g_{ij}x_ix_j: x\in \mathbb{R}^n,\sum_{i=1}^n |x_i|^p=1\Bigr\}. \end{align*}$$The case $p=2$ corresponds to the top eigenvalue of the Gaussian orthogonal ensemble; when $$p=\infty $$, the maximum value is essentially the ground state energy of the Sherrington–Kirkpatrick mean-field spin glass model and its limit can be expressed by the famous Parisi formula. In the present work, we focus on the cases $$1\leq p<2$$ and $$2<p<\infty .$$ For the former, we compute the limit of the $$\ell _p$$-Gaussian–Grothendieck problem and investigate the structure of the set of all near optimizers along with stability estimates. In the latter case, we show that this problem admits a Parisi-type variational representation and the corresponding optimizer is weakly delocalized in the sense that its entries vanish uniformly in a polynomial order of $$n^{-1}$$. 
    more » « less