Water column chlorophyll a was analyzed from 2014 to 2023 in seven freshwater reservoirs in southwestern Virginia (VA), USA, and one freshwater lake in central New Hampshire (NH), USA. These waterbodies are: Beaverdam Reservoir (Vinton, VA), Carvins Cove Reservoir (Roanoke, VA), Claytor Lake (Pulaski, VA), Falling Creek Reservoir (Vinton, VA), Gatewood Reservoir (Pulaski, VA), Smith Mountain Lake (Bedford, VA), Spring Hollow Reservoir (Salem, VA), and Lake Sunapee (Sunapee, NH). Beaverdam, Carvins Cove, Falling Creek, and Spring Hollow Reservoirs are owned and operated by the Western Virginia Water Authority as primary or secondary drinking water sources for Roanoke, Virginia; Gatewood Reservoir is a drinking water source for the Town of Pulaski, Virginia; and Smith Mountain Lake is jointly treated by the Bedford Regional Water Authority and the Western Virginia Water Authority as a drinking water source for Franklin County, Virginia. Claytor Lake is managed for hydroelectric power generation by the Appalachian Power Company. Lake Sunapee is a glacially-formed lake known for its oligotrophic water quality. The dataset consists of depth profiles of chlorophyll a samples generally measured at the deepest site of each reservoir adjacent to the dam or at the buoy site of Lake Sunapee. The water column samples were collected approximately fortnightly from March-April and weekly from May-October at Falling Creek Reservoir and Beaverdam Reservoir, approximately fortnightly from May-August in most years at Carvins Cove Reservoir, approximately fortnightly from May-August in Gatewood and Spring Hollow Reservoirs from 2014-2016, approximately fortnightly from May-August of 2014 in Smith Mountain Lake, sporadically from May-August of 2014 in Claytor Lake, and sporadically from June-August of 2021 and 2022 in Lake Sunapee. Additional chlorophyll a samples were collected at multiple upstream and inflow sites along tributaries to Beaverdam and Falling Creek Reservoirs in summer 2019. The water samples collected were analyzed for both phaeophytin and chlorophyll a to quantify and correct for degraded phytoplankton within the sample. 
                        more » 
                        « less   
                    
                            
                            Variability of summer cyanobacteria abundance: can season-ahead forecasts improve beach management?
                        
                    
    
            As anthropogenic eutrophication and the associated increase of cyanobacteria continue to plague inland waterbodies, local officials are seeking novel methods to proactively manage water resources. Cyanobacteria are of particular concern to health officials due to their ability to produce dangerous hepatotoxins and neurotoxins, which can threaten waterbodies for recreational and drinking-water purposes. Presently, however, there is no cyanobacteria outlook that can provide advance warning of a potential threat at the seasonal time scale. In this study, a statistical model is developed utilizing local and global scale season-ahead hydroclimatic predictors to evaluate the potential for informative cyanobacteria biomass and associated beach closure forecasts across the June–August season for a eutrophic lake in Wisconsin (United States). This model is developed as part of a subseasonal to seasonal cyanobacteria forecasting system to optimize lake management across the peak cyanobacteria season. Model skill is significant in comparison to June–August cyanobacteria observations (Pearson correlation coefficient = 0.62, Heidke skill score = 0.38). The modeling framework proposed here demonstrates encouraging prediction skill and offers the possibility of advanced beach management applications. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10394481
- Date Published:
- Journal Name:
- Lake and Reservoir Management
- ISSN:
- 1040-2381
- Page Range / eLocation ID:
- 1 to 16
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Water column chlorophyll a was analyzed from 2014 to 2024 in seven freshwater reservoirs in southwestern Virginia (VA), USA, and one freshwater lake in central New Hampshire (NH), USA. These waterbodies are: Beaverdam Reservoir (Vinton, VA), Carvins Cove Reservoir (Roanoke, VA), Claytor Lake (Pulaski, VA), Falling Creek Reservoir (Vinton, VA), Gatewood Reservoir (Pulaski, VA), Smith Mountain Lake (Bedford, VA), Spring Hollow Reservoir (Salem, VA), and Lake Sunapee (Sunapee, NH). Beaverdam, Carvins Cove, Falling Creek, and Spring Hollow Reservoirs are owned and operated by the Western Virginia Water Authority as primary or secondary drinking water sources for Roanoke, Virginia; Gatewood Reservoir is a drinking water source for the Town of Pulaski, Virginia; and Smith Mountain Lake is jointly treated by the Bedford Regional Water Authority and the Western Virginia Water Authority as a drinking water source for Franklin County, Virginia. Claytor Lake is managed for hydroelectric power generation by the Appalachian Power Company. Lake Sunapee is a glacially-formed lake known for its oligotrophic water quality. The dataset consists of depth profiles of chlorophyll a samples generally measured at the deepest site of each reservoir adjacent to the dam or at the buoy site of Lake Sunapee. The water column samples were collected approximately fortnightly from March-April and weekly from May-October at Falling Creek Reservoir and Beaverdam Reservoir, approximately fortnightly from May-August in most years at Carvins Cove Reservoir, approximately fortnightly from May-August in Gatewood and Spring Hollow Reservoirs from 2014-2016, approximately fortnightly from May-August of 2014 in Smith Mountain Lake, sporadically from May-August of 2014 in Claytor Lake, and sporadically from June-August of 2021-2022 and 2024 in Lake Sunapee. Additional chlorophyll a samples were collected at multiple upstream and inflow sites along tributaries to Beaverdam and Falling Creek Reservoirs in summer 2019. The water samples collected were analyzed for both phaeophytin and chlorophyll a to quantify and correct for degraded phytoplankton within the sample.more » « less
- 
            Water column chlorophyll a was analyzed from 2014 to 2022 in seven freshwater reservoirs in southwestern Virginia (VA), USA, and one freshwater lake in central New Hampshire (NH). These waterbodies are: Beaverdam Reservoir (Vinton, VA), Carvins Cove Reservoir (Roanoke, VA), Claytor Lake (Pulaski, VA), Falling Creek Reservoir (Vinton, VA), Gatewood Reservoir (Pulaski, VA), Smith Mountain Lake (Bedford, VA), Spring Hollow Reservoir (Salem, VA), and Lake Sunapee (Sunapee, NH). Beaverdam, Carvins Cove, Falling Creek, and Spring Hollow Reservoirs are owned and operated by the Western Virginia Water Authority as primary or secondary drinking water sources for Roanoke, Virginia; Gatewood Reservoir is a drinking water source for the Town of Pulaski, Virginia; and Smith Mountain Lake is jointly treated by the Bedford Regional Water Authority and the Western Virginia Water Authority as a drinking water source for Franklin County, Virginia. Claytor Lake is utilized for hydroelectric power generation by the Appalachian Power Company. Lake Sunapee is a glacially-formed lake known for its oligotrophic water quality. The dataset consists of depth profiles of chlorophyll a samples generally measured at the deepest site of each reservoir adjacent to the dam. The water column samples were collected approximately fortnightly from March-April and weekly from May-October at Falling Creek Reservoir and Beaverdam Reservoir, approximately fortnightly from May-August in most years at Carvins Cove Reservoir, approximately fortnightly from May-August in Gatewood and Spring Hollow Reservoirs from 2014-2016, approximately fortnightly from May-August of 2014 in Smith Mountain Lake, sporadically from May-August of 2014 in Claytor Lake, and sporadically from June-August of 2021 and 2022 in Lake Sunapee. Additional chlorophyll a samples were collected at multiple upstream and inflow sites along tributaries to Beaverdam and Falling Creek Reservoirs in summer 2019. The water samples collected were analyzed for both phaeophytin and chlorophyll a to quantify and correct for degraded phytoplankton within the sample.more » « less
- 
            This dataset contains the raw data associated with the manuscript entitled: Aquatic Moss δ18O as a Proxy for Seasonally Resolved Lake Water δ18O, Northwest Greenland (Puleo et al., 2024). Reconstructing past climate seasonality is fundamental to understanding the nature of past climate changes. This is especially true in the Arctic, where climate is intensely seasonal and proxies that can distinguish climate conditions of multiple seasons in a single year are relatively rare. We propose that submerged aquatic mosses, which are abundant subfossils in some Arctic lake sediments and have distinctive seasonal growth morphologies, can be used to estimate past lake water oxygen isotope composition (δ18Olw) across multiple seasons. Aquatic mosses are abundant, well preserved, and grow continuously in Arctic lakes whenever light is available, with some species displaying unique seasonal morphologies influenced by water temperature. Although Greenland paleorecords support that aquatic moss oxygen isotope values (δ18Oom) reflect the δ18O values of lake water, no modern calibration between δ18Oom and δ18Olw exists in Greenland, as aquatic moss samples are composed largely, but not entirely, of cellulose. We present a modern δ18Oom vs. δ18Olw calibration using multiple moss species or morphotypes from eight lakes and ponds near Pituffik (Thule), northwest Greenland. We find strong linear relationships between the δ18Oom and δ18Olw values of multiple species or morphotypes across the range of relatively low δ18Olw values at Pituffik, and our results indicate isotopic fractionations are similar to those found previously at lower latitudes. To assess the potential of mosses as archives of seasonal δ18Olw values, we analyzed δ18Oom in season-specific segments of moss strands, with seasons identified based upon growth morphology. Moss inferred lake water δ18O values (δ18Olwom) are higher in autumn than spring or summer, likely due to increasing contributions of isotopically heavier precipitation and the cumulative effects of lake water evaporation throughout the ice-free season. For moss subsampled throughout summer, δ18Olwom values generally increased through the season in parallel with observed δ18Olw values. Potential temperature dependent fractionation effects during biosynthesis, however, remain unconstrained and should be further addressed with future research. Overall, these findings suggest that aquatic mosses from lake sediments could be used to directly resolve climate seasonality of the past. Puleo, P.J.K., Akers, P.D., Kopec, B.G., Welker, J.M., Bailey, H., Osburn, M.R., Riis, T., Axford, Y., 2024. Aquatic moss δ18O as a proxy for seasonally resolved lake water δ18O, northwest Greenland. Quaternary Science Reviews 334, 1-11.more » « less
- 
            Climate change is affecting mountain ecosystems by increasing vegetation coverage and altering meteorological conditions. These changes are likely to impact the timing and magnitude of dissolved organic matter (DOM) inputs to lakes from the surrounding catchment. We examined temporal dynamics of DOM using in situ optical sensors that measured DOM fluorescence (fDOM) through the ice-free season in five lakes with differing catchment characteristics. We also measured changes in lake level and compiled daily meteorological data from nearby weather stations. At a seasonal time scale, fDOM dynamics occurred in two phases. fDOM declined in the first phase, which lasted until late July – mid-August, and corresponded to a decline in lake level following spring snowmelt. This decline was more pronounced in lakes with more vegetated catchments. At a shorter time scale, fDOM increased following precipitation events with a 0- to 1-day lag. Rates of fDOM increase per centmetre change in lake level were greater in lakes with vegetated catchments. As climate change increases vegetation coverage, DOM will likely become more dynamic at daily and seasonal time scales and impact water transparency and productivity of mountain lakes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    