Understanding human movements in the face of natural disasters is critical for disaster evacuation planning, management, and relief. Despite the clear need for such work, these studies are rare in the literature due to the lack of available data measuring spatiotemporal mobility patterns during actual disasters. This study explores the spatiotemporal patterns of evacuation travels by leveraging users’ location information from millions of tweets posted in the hours prior and concurrent to Hurricane Matthew. Our analysis yields several practical insights, including the following: (1) We identified trajectories of Twitter users moving out of evacuation zones once the evacuation was ordered and then returning home after the hurricane passed. (2) Evacuation zone residents produced an unusually large number of tweets outside evacuation zones during the evacuation order period. (3) It took several days for the evacuees in both South Carolina and Georgia to leave their residential areas after the mandatory evacuation was ordered, but Georgia residents typically took more time to return home. (4) Evacuees are more likely to choose larger cities farther away as their destinations for safety instead of nearby small cities. (5) Human movements during the evacuation follow a log-normal distribution.
more »
« less
Specifying evacuation return and home-switch stability during short-term disaster recovery using location-based data
Abstract The objectives of this study are: (1) to specify evacuation return and home-switch stability as two critical milestones of short-term recovery during and in the aftermath of disasters; and (2) to understand the disparities among subpopulations in the duration of these critical recovery milestones. Using privacy-preserving fine-resolution location-based data, we examine evacuation and home move-out rates in Harris County, Texas in the context of the 2017 Hurricane Harvey. For each of the two critical recovery milestones, the results reveal the areas with short- and long-return durations and enable evaluating disparities in evacuation return and home-switch stability patterns. In fact, a shorter duration of critical recovery milestone indicators in flooded areas is not necessarily a positive indication. Shorter evacuation return could be due to barriers to evacuation and shorter home move-out rate return for lower-income residents is associated with living in rental homes. In addition, skewed and non-uniform recovery patterns for both the evacuation return and home-switch stability were observed in all subpopulation groups. All return patterns show a two-phase return progress pattern. The findings could inform disaster managers and public officials to perform recovery monitoring and resource allocation in a more proactive, data-driven, and equitable manner.
more »
« less
- Award ID(s):
- 1846069
- PAR ID:
- 10394497
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The objective of this study is to examine spatial patterns of disaster impacts and recovery of communities based on fluctuations in credit card transactions (CCTs). Such fluctuations could capture the collective effects of household impacts, disrupted accesses, and business closures and thus provide an integrative measure for examining disaster impacts and community recovery. Existing studies depend mainly on survey and sociodemographic data for disaster impacts and recovery effort evaluations, although such data has limitations, including large data collection efforts and delayed timeliness results. Also, there are very few studies have concentrated on spatial patterns of disaster impacts and short-term recovery of communities, although such investigation can enhance situational awareness during disasters and support the identification of disparate spatial patterns of disaster impacts and recovery in the impacted regions. This study examines CCTs data Harris County (Texas, USA) during Hurricane Harvey in 2017 to explore spatial patterns of disaster impacts and recovery duration from the perspective of community residents and businesses at ZIP-code and county scales, respectively, and to further investigate their spatial disparities across ZIP codes. The results indicate that individuals in ZIP codes with populations of higher income experienced more severe disaster impact and recovered more quickly than those located in lower income ZIP codes for most business sectors. Our findings not only enhance the understanding of spatial patterns and disparities in disaster impacts and recovery for better community resilience assessment but also could benefit emergency managers, city planners, and public officials in enhanced situational awareness and resource allocation.more » « less
-
To understand community impacts and needs after the August 2023 Maui wildfires, we conducted a rapid survey-based field investigation two weeks after the incident. During the fires, municipal water customers were warned not to use their water due to potential drinking water contamination. Household displacement and isolation of some impacted areas limited extensive study participation. Households (14) in the affected areas were visited and surveyed about property characteristics, evacuation, water use, and water quality observations. Publicly available test results from Maui County and the University of Hawai'i were also reviewed. Opportunistically, wildfire impacts to agricultural water systems were documented. Half of the households had property damage, and all lost power and used drinking water before being notified that it was potentially contaminated. Nearly all households expressed confusion about allowable water use activities and health risks. Most households noticed water issues after the evacuation order was lifted, and some acquired and used at-home drinking water test kits. None of these kits could find all previously identified fire-related chemicals. Damage to agricultural water systems was similar to damage seen for residential systems. Recommendations to lessen impacts and expedite community response and recovery from wildfires are provided.more » « less
-
Abstract Lifestyle recovery captures the collective effects of population activities as well as the restoration of infrastructure and business services. This study uses a novel approach to leverage privacy-enhanced location intelligence data, which is anonymized and aggregated, to characterize distinctive lifestyle patterns and to unveil recovery trajectories after 2017 Hurricane Harvey in Harris County, Texas (USA). The analysis integrates multiple data sources to record the number of visits from home census block groups (CBGs) to different points of interest (POIs) in the county during the baseline and disaster periods. For the methodology, the research utilizes unsupervised machine learning and ANOVA statistical testing to characterize the recovery of lifestyles using privacy-enhanced location intelligence data. First, primary clustering using k-means characterized four distinct essential and non-essential lifestyle patterns. For each primary lifestyle cluster, the secondary clustering characterized the impact of the hurricane into four possible recovery trajectories based on the severity of maximum disruption and duration of recovery. The findings further reveal multiple recovery trajectories and durations within each lifestyle cluster, which imply differential recovery rates among similar lifestyles and different demographic groups. The impact of flooding on lifestyle recovery extends beyond the flooded regions, as 59% of CBGs with extreme recovery durations did not have at least 1% of direct flooding impacts. The findings offer a twofold theoretical significance: (1) lifestyle recovery is a critical milestone that needs to be examined, quantified, and monitored in the aftermath of disasters; (2) spatial structures of cities formed by human mobility and distribution of facilities extend the spatial reach of flood impacts on population lifestyles. These provide novel data-driven insights for public officials and emergency managers to examine, measure, and monitor a critical milestone in community recovery trajectory based on the return of lifestyles to normalcy.more » « less
-
Abstract Major disasters such as extreme weather events can magnify and exacerbate pre-existing social disparities, with disadvantaged populations bearing disproportionate costs. Despite the implications for equity and emergency planning, we lack a quantitative understanding of how these social fault lines translate to different behaviours in large-scale emergency contexts. Here we investigate this problem in the context of Hurricane Harvey, using over 30 million anonymized GPS records from over 150,000 opted-in users in the Greater Houston Area to quantify patterns of disaster-inflicted relocation activities before, during, and after the shock. We show that evacuation distance is highly homogenous across individuals from different types of neighbourhoods classified by race and wealth, obeying a truncated power-law distribution. Yet here the similarities end: we find that both race and wealth strongly impact evacuation patterns, with disadvantaged minority populations less likely to evacuate than wealthier white residents. Finally, there are considerable discrepancies in terms of departure and return times by race and wealth, with strong social cohesion among evacuees from advantaged neighbourhoods in their destination choices. These empirical findings bring new insights into mobility and evacuations, providing policy recommendations for residents, decision-makers, and disaster managers alike.more » « less
An official website of the United States government

