skip to main content


Title: How Do Cities Flow in an Emergency? Tracing Human Mobility Patterns during a Natural Disaster with Big Data and Geospatial Data Science
Understanding human movements in the face of natural disasters is critical for disaster evacuation planning, management, and relief. Despite the clear need for such work, these studies are rare in the literature due to the lack of available data measuring spatiotemporal mobility patterns during actual disasters. This study explores the spatiotemporal patterns of evacuation travels by leveraging users’ location information from millions of tweets posted in the hours prior and concurrent to Hurricane Matthew. Our analysis yields several practical insights, including the following: (1) We identified trajectories of Twitter users moving out of evacuation zones once the evacuation was ordered and then returning home after the hurricane passed. (2) Evacuation zone residents produced an unusually large number of tweets outside evacuation zones during the evacuation order period. (3) It took several days for the evacuees in both South Carolina and Georgia to leave their residential areas after the mandatory evacuation was ordered, but Georgia residents typically took more time to return home. (4) Evacuees are more likely to choose larger cities farther away as their destinations for safety instead of nearby small cities. (5) Human movements during the evacuation follow a log-normal distribution.  more » « less
Award ID(s):
1634641 1762160
NSF-PAR ID:
10108843
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Urban Science
Volume:
3
Issue:
2
ISSN:
2413-8851
Page Range / eLocation ID:
51
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    How evacuations are managed can substantially impact the risks faced by affected communities. Having a better understanding of the mobility patterns of evacuees can improve the planning and management of these evacuations. Although mobility patterns during evacuations have traditionally been studied through surveys, mobile phone location data can be used to capture these movements for a greater number of evacuees over a larger geographic area. Several approaches have been used to identify hurricane evacuation patterns from location data; however, each approach relies on researcher judgment to first determine the areas from which evacuations occurred and then identify evacuations by determining when an individual spends a specified number of nights away from home. This approach runs the risk of detecting non‐evacuation behaviors (e.g., work trips, vacations, etc.) and incorrectly labeling them as evacuations where none occurred. In this article, we developed a data‐driven method to determine which areas experienced evacuations. With this approach, we inferred home locations of mobile phone users, calculated their departure times, and determined if an evacuation may have occurred by comparing the number of departures around the time of the hurricane against historical trends. As a case study, we applied this method to location data from Hurricanes Matthew and Irma to identify areas that experienced evacuations and illustrate how this method can be used to detect changes in departure behavior leading up to and following a hurricane. We validated and examined the inferred homes for representativeness and validated observed evacuation trends against past studies.

     
    more » « less
  2. Abstract Major disasters such as extreme weather events can magnify and exacerbate pre-existing social disparities, with disadvantaged populations bearing disproportionate costs. Despite the implications for equity and emergency planning, we lack a quantitative understanding of how these social fault lines translate to different behaviours in large-scale emergency contexts. Here we investigate this problem in the context of Hurricane Harvey, using over 30 million anonymized GPS records from over 150,000 opted-in users in the Greater Houston Area to quantify patterns of disaster-inflicted relocation activities before, during, and after the shock. We show that evacuation distance is highly homogenous across individuals from different types of neighbourhoods classified by race and wealth, obeying a truncated power-law distribution. Yet here the similarities end: we find that both race and wealth strongly impact evacuation patterns, with disadvantaged minority populations less likely to evacuate than wealthier white residents. Finally, there are considerable discrepancies in terms of departure and return times by race and wealth, with strong social cohesion among evacuees from advantaged neighbourhoods in their destination choices. These empirical findings bring new insights into mobility and evacuations, providing policy recommendations for residents, decision-makers, and disaster managers alike. 
    more » « less
  3. null (Ed.)
    The State of Florida is significantly vulnerable to catastrophic hurricanes that cause widespread infrastructural damage and claim lives annually. In 2017, Hurricane Irma, a Category 4 hurricane, took on the entirety of Florida, causing the state’s largest evacuation ever as 7 million residents fled the hurricane. Floridians fleeing the hurricane faced the unique challenge of where to go, since Irma made an unusual landfall from the south, enveloping the entire state, forcing evacuees to drive farther north, and creating traffic jams along Florida’s evacuation routes that were worse than during any other hurricane in Florida's history. This study aimed to assess the spatiotemporal traffic impacts of Irma on Florida’s major highways based on real-time traffic data before, during, and after the hurricane made landfall. First, we conducted a time-series-based analysis to evaluate the temporal evacuation patterns of this large-scale evacuation. Second, we developed a metric, namely the congestion index (CI), to assess the spatiotemporal evacuation patterns on I-95, I-75, I-10, I-4, and turnpike (SR-91) highways with a focus on both evacuation and returning traffic. Third, we employed a geographic information system-based analysis to visually illustrate the CI values of corresponding highway sections with respect to different dates and times. Findings clearly showed that imperfect forecasts and the uncertainty surrounding Irma’s predicted path resulted in high levels of congestion and severe delays on Florida’s major evacuation routes. 
    more » « less
  4. Abstract Hurricanes are one of the most catastrophic natural hazards faced by residents of the United States. Improving the public’s hurricane preparedness is essential to reduce the impact and disruption of hurricanes on households. Inherent in traditional methods for quantifying and monitoring hurricane preparedness are significant lags, which hinder effective monitoring of residents’ preparedness in advance of an impending hurricane. This study establishes a methodological framework to quantify the extent, timing, and spatial variation of hurricane preparedness at the census block group level using high-resolution location intelligence data. Anonymized cell phone data on visits to points-of-interest for each census block group in Harris County before 2017 Hurricane Harvey were used to examine residents’ hurricane preparedness. Four categories of points-of-interest, grocery stores, gas stations, pharmacies and home improvement stores, were identified as they have close relationship with hurricane preparedness, and the daily number of visits from each CBG to these four categories of POIs were calculated during preparation period. Two metrics, extent of preparedness and proactivity, were calculated based on the daily visit percentage change compared to the baseline period. The results show that peak visits to pharmacies often occurred in the early stage of preparation, whereas the peak of visits to gas stations happened closer to hurricane landfall. The spatial and temporal patterns of visits to grocery stores and home improvement stores were quite similar. However, correlation analysis demonstrates that extent of preparedness and proactivity are independent of each other. Combined with synchronous evacuation data, CBGs in Harris County were divided into four clusters in terms of extent of preparedness and evacuation rate. The clusters with low preparedness and low evacuation rate were identified as hotspots of vulnerability for shelter-in-place households that would need urgent attention during response. Hence, the research findings provide a new data-driven approach to quantify and monitor the extent, timing, and spatial variations of hurricane preparedness. Accordingly, the study advances data-driven understanding of human protective actions during disasters. The study outcomes also provide emergency response managers and public officials with novel data-driven insights to more proactively monitor residents’ disaster preparedness, making it possible to identify under-prepared areas and better allocate resources in a timely manner. 
    more » « less
  5. Abstract The objectives of this study are: (1) to specify evacuation return and home-switch stability as two critical milestones of short-term recovery during and in the aftermath of disasters; and (2) to understand the disparities among subpopulations in the duration of these critical recovery milestones. Using privacy-preserving fine-resolution location-based data, we examine evacuation and home move-out rates in Harris County, Texas in the context of the 2017 Hurricane Harvey. For each of the two critical recovery milestones, the results reveal the areas with short- and long-return durations and enable evaluating disparities in evacuation return and home-switch stability patterns. In fact, a shorter duration of critical recovery milestone indicators in flooded areas is not necessarily a positive indication. Shorter evacuation return could be due to barriers to evacuation and shorter home move-out rate return for lower-income residents is associated with living in rental homes. In addition, skewed and non-uniform recovery patterns for both the evacuation return and home-switch stability were observed in all subpopulation groups. All return patterns show a two-phase return progress pattern. The findings could inform disaster managers and public officials to perform recovery monitoring and resource allocation in a more proactive, data-driven, and equitable manner. 
    more » « less