We demonstrate a method that permits wavefront aberration correction using an array of electrowetting prisms. A fixed high fill factor microlens array followed by a lower fill factor adaptive electrowetting prism array is used to correct wavefront aberration. The design and simulation of such aberration correction mechanism is described. Our results show significant improvement to the Strehl ratio by using our aberration correction scheme which results in diffraction limited performance. Compactness and effectiveness of our design can be implemented in many applications that require aberration correction, such as microscopy and consumer electronics. 
                        more » 
                        « less   
                    
                            
                            Intrinsic aberration coefficients for plane-symmetric optical systems consisting of spherical surfaces
                        
                    
    
            This paper presents the analytical form of the intrinsic aberration coefficients for spherical plane-symmetric optical systems expressed as a function of first-order system parameters and the paraxial chief and marginal ray angles and heights. The derived aberration coefficients are in the third and fourth groups with the multiplication of two or three vector products of pupil and field vectors. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10394538
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Journal of the Optical Society of America A
- Volume:
- 40
- Issue:
- 2
- ISSN:
- 1084-7529; JOAOD6
- Format(s):
- Medium: X Size: Article No. 378
- Size(s):
- Article No. 378
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Holographic particle characterization treats holographic microscopy of colloidal particles as an inverse problem whose solution yields the diameter, refractive index and three-dimensional position of each particle in the field of view, all with exquisite precision. This rich source of information on the composition and dynamics of colloidal dispersions has created new opportunities for fundamental research in soft-matter physics, statistical physics and physical chemistry, and has been adopted for product development, quality assurance and process control in industrial applications. Aberrations introduced by real-world imaging conditions, however, can degrade performance by causing systematic and correlated errors in the estimated parameters. We identify a previously overlooked source of spherical aberration as a significant source of these errors. Modeling aberration-induced distortions with an operator-based formalism identifies a spatially varying phase factor that approximately compensates for spherical aberration in recorded holograms. Measurements on model colloidal dispersions demonstrate that phase-only aberration compensation greatly improves the accuracy of holographic particle characterization without significantly affecting measurement speed for high-throughput applications.more » « less
- 
            Subangstrom resolution has long been limited to aberration-corrected electron microscopy, where it is a powerful tool for understanding the atomic structure and properties of matter. Here, we demonstrate electron ptychography in an uncorrected scanning transmission electron microscope (STEM) with deep subangstrom spatial resolution down to 0.44 angstroms, exceeding the conventional resolution of aberration-corrected tools and rivaling their highest ptychographic resolutions. Our approach, which we demonstrate on twisted two-dimensional materials in a widely available commercial microscope, far surpasses prior ptychographic resolutions (1 to 5 angstroms) of uncorrected STEMs. We further show how geometric aberrations can create optimized, structured beams for dose-efficient electron ptychography. Our results demonstrate that expensive aberration correctors are no longer required for deep subangstrom resolution.more » « less
- 
            Nodal aberration theory (NAT) is a vectorized aberration theory that was developed to describe systems without rotational symmetry. NAT predicts non-rotationally symmetric aberration field dependences for third-order astigmatism and in particular a “binodal” behavior in which there are two points in the field of view where astigmatism vanishes. This study serves to demonstrate an alignment technique based on an understanding of this binodal behavior using a custom Ritchey-Chretien telescope. A method involving a commercial Shack-Hartmann compact-format wavefront sensor was developed to rapidly measure densely sampled full-field displays of the telescope, which has its secondary mirror mounted on a precision hexapod to allow for repeatable control of the telescope alignment. Real ray-based simulations were carried out on a model of the telescope and were consistent with the observed experimental results for both aligned and misaligned states of the telescope. We then provide guidelines on how to interpret Fringe Zernike astigmatism full-field displays for use during optical system alignment. This method is particularly relevant for freeform systems, which often have asymmetric field dependencies for multiple aberration types including astigmatism.more » « less
- 
            Blur occurs naturally when the eye is focused at one distance and an object is presented at another distance. Computer-graphics engineers and vision scientists often wish to create display images that reproduce such depth-dependent blur, but their methods are incorrect for that purpose. They take into account the scene geometry, pupil size, and focal distances, but do not properly take into account the optical aberrations of the human eye. We developed a method that, by incorporating the viewer’s optics, yields displayed images that produce retinal images close to the ones that occur in natural viewing. We concentrated on the effects of defocus, chromatic aberration, astigmatism, and spherical aberration and evaluated their effectiveness by conducting experiments in which we attempted to drive the eye’s focusing response (accommodation) through the rendering of these aberrations. We found that accommodation is not driven at all by conventional rendering methods, but that it is driven surprisingly quickly and accurately by our method with defocus and chromatic aberration incorporated. We found some effect of astigmatism but none of spherical aberration. We discuss how the rendering approach can be used in vision science experiments and in the development of ophthalmic/optometric devices and augmented- and virtual-reality displays.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
